
RCCL Documentation
Release 2.18.6

Advanced Micro Devices, Inc.

Apr 17, 2024

CONTENTS

1 What is RCCL? 3

2 RCCL library specification 5
2.1 Communicator functions . 5
2.2 Collective communication operations . 7
2.3 Group semantics . 11
2.4 Library functions . 12
2.5 Types . 12
2.6 Enumerations . 13

3 API library 17
3.1 Introduction . 37
3.2 RCCL API Contents . 37
3.3 RCCL API File . 38

4 License 39

5 Attributions 41

Index 43

i

ii

RCCL Documentation, Release 2.18.6

Welcome to the ROCm Collective Communication Library (RCCL) docs home page! To learn more, see What is
RCCL?.

Our documentation is structured as follows:

API reference

• Library specification

• API library

To contribute to the documentation refer to Contributing to ROCm.

Licensing information can be found on the Licensing page.

CONTENTS 1

https://rocm.docs.amd.com/en/latest/contribute/contributing.html
https://rocm.docs.amd.com/en/latest/about/license.html

RCCL Documentation, Release 2.18.6

2 CONTENTS

CHAPTER

ONE

WHAT IS RCCL?

RCCL (pronounced “Rickel”) is a stand-alone library that provides multi-GPU and multi-node collective communica-
tion primitives optimized for AMD GPUs. It implements routines such as all-reduce, all-gather, reduce, broadcast,
reduce-scatter, gather, scatter, all-to-allv, and all-to-all as well as direct point-to-point (GPU-to-GPU) send and receive
operations. The provided collective communication routines are implemented using Ring and Tree algorithms. They
are optimized to achieve high bandwidth and low latency by leveraging topology awareness, high-speed interconnects,
and RDMA based collectives.

RCCL utilizes PCIe and xGMI high-speed interconnects for intra-node communication as well as InfiniBand, RoCE,
and TCP/IP for inter-node communication. It supports an arbitrary number of GPUs installed in a single-node or
multi-node platform and can be easily integrated into single- or multi-process (e.g., MPI) applications.

3

RCCL Documentation, Release 2.18.6

4 Chapter 1. What is RCCL?

CHAPTER

TWO

RCCL LIBRARY SPECIFICATION

This document provides details of the API library.

2.1 Communicator functions

ncclResult_t ncclGetUniqueId(ncclUniqueId *uniqueId)
Generates an ID for ncclCommInitRank.

Generates an ID to be used in ncclCommInitRank. ncclGetUniqueId should be called once by a single rank and
the ID should be distributed to all ranks in the communicator before using it as a parameter for ncclCommIni-
tRank.

Parameters
uniqueId – [out] Pointer to where uniqueId will be stored

Returns
Result code. See Result Codes for more details.

ncclResult_t ncclCommInitRank(ncclComm_t *comm, int nranks, ncclUniqueId commId, int rank)
Creates a new communicator (multi thread/process version).

Rank must be between 0 and nranks-1 and unique within a communicator clique. Each rank is associated to a
CUDA device, which has to be set before calling ncclCommInitRank. ncclCommInitRank implicitly syncronizes
with other ranks, so it must be called by different threads/processes or use ncclGroupStart/ncclGroupEnd.

Parameters
• comm – [out] Pointer to created communicator

• nranks – [in] Total number of ranks participating in this communicator

• commId – [in] UniqueId required for initialization

• rank – [in] Current rank to create communicator for

Returns
Result code. See Result Codes for more details.

ncclResult_t ncclCommInitAll(ncclComm_t *comm, int ndev, const int *devlist)
Creates a clique of communicators (single process version).

This is a convenience function to create a single-process communicator clique. Returns an array of ndev newly
initialized communicators in comm. comm should be pre-allocated with size at least ndev*sizeof(ncclComm_t).
If devlist is NULL, the first ndev HIP devices are used. Order of devlist defines user-order of processors within
the communicator.

Parameters

5

RCCL Documentation, Release 2.18.6

• comm – [out] Pointer to array of created communicators

• ndev – [in] Total number of ranks participating in this communicator

• devlist – [in] Array of GPU device indices to create for

Returns
Result code. See Result Codes for more details.

ncclResult_t ncclCommDestroy(ncclComm_t comm)
Frees local resources associated with communicator object.

Destroy all local resources associated with the passed in communicator object

Parameters
comm – [in] Communicator to destroy

Returns
Result code. See Result Codes for more details.

ncclResult_t ncclCommAbort(ncclComm_t comm)
Abort any in-progress calls and destroy the communicator object.

Frees resources associated with communicator object and aborts any operations that might still be running on
the device.

Parameters
comm – [in] Communicator to abort and destroy

Returns
Result code. See Result Codes for more details.

ncclResult_t ncclCommCount(const ncclComm_t comm, int *count)
Gets the number of ranks in the communicator clique.

Returns the number of ranks in the communicator clique (as set during initialization)

Parameters
• comm – [in] Communicator to query

• count – [out] Pointer to where number of ranks will be stored

Returns
Result code. See Result Codes for more details.

ncclResult_t ncclCommCuDevice(const ncclComm_t comm, int *device)
Get the ROCm device index associated with a communicator.

Returns the ROCm device number associated with the provided communicator.

Parameters
• comm – [in] Communicator to query

• device – [out] Pointer to where the associated ROCm device index will be stored

Returns
Result code. See Result Codes for more details.

ncclResult_t ncclCommUserRank(const ncclComm_t comm, int *rank)
Get the rank associated with a communicator.

Returns the user-ordered “rank” associated with the provided communicator.

Parameters

6 Chapter 2. RCCL library specification

RCCL Documentation, Release 2.18.6

• comm – [in] Communicator to query

• rank – [out] Pointer to where the associated rank will be stored

Returns
Result code. See Result Codes for more details.

2.2 Collective communication operations

Collective communication operations must be called separately for each communicator in a communicator clique.

They return when operations have been enqueued on the hipstream.

Since they may perform inter-CPU synchronization, each call has to be done from a different thread or process, or need
to use Group Semantics (see below).

ncclResult_t ncclReduce(const void *sendbuff, void *recvbuff, size_t count, ncclDataType_t datatype,
ncclRedOp_t op, int root, ncclComm_t comm, hipStream_t stream)

Reduce.

Reduces data arrays of length count in sendbuff into recvbuff using op operation. recvbuff* may be NULL on
all calls except for root device. root* is the rank (not the HIP device) where data will reside after the operation
is complete. In-place operation will happen if sendbuff == recvbuff.

Parameters
• sendbuff – [in] Local device data buffer to be reduced

• recvbuff – [out] Data buffer where result is stored (only for root rank). May be null for
other ranks.

• count – [in] Number of elements in every send buffer

• datatype – [in] Data buffer element datatype

• op – [in] Reduction operator type

• root – [in] Rank where result data array will be stored

• comm – [in] Communicator group object to execute on

• stream – [in] HIP stream to execute collective on

Returns
Result code. See Result Codes for more details.

ncclResult_t ncclBcast(void *buff, size_t count, ncclDataType_t datatype, int root, ncclComm_t comm,
hipStream_t stream)

(Deprecated) Broadcast (in-place)

Copies count values from root to all other devices. root is the rank (not the CUDA device) where data resides
before the operation is started. This operation is implicitly in-place.

Parameters
• buff – [inout] Input array on root to be copied to other ranks. Output array for all ranks.

• count – [in] Number of elements in data buffer

• datatype – [in] Data buffer element datatype

• root – [in] Rank owning buffer to be copied to others

• comm – [in] Communicator group object to execute on

2.2. Collective communication operations 7

RCCL Documentation, Release 2.18.6

• stream – [in] HIP stream to execute collective on

Returns
Result code. See Result Codes for more details.

ncclResult_t ncclBroadcast(const void *sendbuff, void *recvbuff, size_t count, ncclDataType_t datatype, int root,
ncclComm_t comm, hipStream_t stream)

Broadcast.

Copies count values from sendbuff on root to recvbuff on all devices. root* is the rank (not the HIP device)
where data resides before the operation is started. sendbuff* may be NULL on ranks other than root. In-place
operation will happen if sendbuff == recvbuff.

Parameters
• sendbuff – [in] Data array to copy (if root). May be NULL for other ranks

• recvbuff – [in] Data array to store received array

• count – [in] Number of elements in data buffer

• datatype – [in] Data buffer element datatype

• root – [in] Rank of broadcast root

• comm – [in] Communicator group object to execute on

• stream – [in] HIP stream to execute collective on

Returns
Result code. See Result Codes for more details.

ncclResult_t ncclAllReduce(const void *sendbuff, void *recvbuff, size_t count, ncclDataType_t datatype,
ncclRedOp_t op, ncclComm_t comm, hipStream_t stream)

All-Reduce.

Reduces data arrays of length count in sendbuff using op operation, and leaves identical copies of result on each
recvbuff. In-place operation will happen if sendbuff == recvbuff.

Parameters
• sendbuff – [in] Input data array to reduce

• recvbuff – [out] Data array to store reduced result array

• count – [in] Number of elements in data buffer

• datatype – [in] Data buffer element datatype

• op – [in] Reduction operator

• comm – [in] Communicator group object to execute on

• stream – [in] HIP stream to execute collective on

Returns
Result code. See Result Codes for more details.

ncclResult_t ncclReduceScatter(const void *sendbuff, void *recvbuff, size_t recvcount, ncclDataType_t datatype,
ncclRedOp_t op, ncclComm_t comm, hipStream_t stream)

Reduce-Scatter.

Reduces data in sendbuff using op operation and leaves reduced result scattered over the devices so that recvbuff
on rank i will contain the i-th block of the result. Assumes sendcount is equal to nranks*recvcount, which
means that sendbuff should have a size of at least nranks*recvcount elements. In-place operations will happen
if recvbuff == sendbuff + rank * recvcount.

8 Chapter 2. RCCL library specification

RCCL Documentation, Release 2.18.6

Parameters
• sendbuff – [in] Input data array to reduce

• recvbuff – [out] Data array to store reduced result subarray

• recvcount – [in] Number of elements each rank receives

• datatype – [in] Data buffer element datatype

• op – [in] Reduction operator

• comm – [in] Communicator group object to execute on

• stream – [in] HIP stream to execute collective on

Returns
Result code. See Result Codes for more details.

ncclResult_t ncclAllGather(const void *sendbuff, void *recvbuff, size_t sendcount, ncclDataType_t datatype,
ncclComm_t comm, hipStream_t stream)

All-Gather.

Each device gathers sendcount values from other GPUs into recvbuff, receiving data from rank i at offset
i*sendcount. Assumes recvcount is equal to nranks*sendcount, which means that recvbuff should have a size of
at least nranks*sendcount elements. In-place operations will happen if sendbuff == recvbuff + rank * sendcount.

Parameters
• sendbuff – [in] Input data array to send

• recvbuff – [out] Data array to store the gathered result

• sendcount – [in] Number of elements each rank sends

• datatype – [in] Data buffer element datatype

• comm – [in] Communicator group object to execute on

• stream – [in] HIP stream to execute collective on

Returns
Result code. See Result Codes for more details.

ncclResult_t ncclSend(const void *sendbuff, size_t count, ncclDataType_t datatype, int peer, ncclComm_t comm,
hipStream_t stream)

Send.

Send data from sendbuff to rank peer. Rank peer needs to call ncclRecv with the same datatype and the same
count as this rank. This operation is blocking for the GPU. If multiple ncclSend and ncclRecv operations need
to progress concurrently to complete, they must be fused within a ncclGroupStart / ncclGroupEnd section.

Parameters
• sendbuff – [in] Data array to send

• count – [in] Number of elements to send

• datatype – [in] Data buffer element datatype

• peer – [in] Peer rank to send to

• comm – [in] Communicator group object to execute on

• stream – [in] HIP stream to execute collective on

2.2. Collective communication operations 9

RCCL Documentation, Release 2.18.6

Returns
Result code. See Result Codes for more details.

ncclResult_t ncclRecv(void *recvbuff, size_t count, ncclDataType_t datatype, int peer, ncclComm_t comm,
hipStream_t stream)

Receive.

Receive data from rank peer into recvbuff. Rank peer needs to call ncclSend with the same datatype and the
same count as this rank. This operation is blocking for the GPU. If multiple ncclSend and ncclRecv operations
need to progress concurrently to complete, they must be fused within a ncclGroupStart/ ncclGroupEnd section.

Parameters
• recvbuff – [out] Data array to receive

• count – [in] Number of elements to receive

• datatype – [in] Data buffer element datatype

• peer – [in] Peer rank to send to

• comm – [in] Communicator group object to execute on

• stream – [in] HIP stream to execute collective on

Returns
Result code. See Result Codes for more details.

ncclResult_t ncclGather(const void *sendbuff, void *recvbuff, size_t sendcount, ncclDataType_t datatype, int root,
ncclComm_t comm, hipStream_t stream)

Gather.

Root device gathers sendcount values from other GPUs into recvbuff, receiving data from rank i at offset
i*sendcount. Assumes recvcount is equal to nranks*sendcount, which means that recvbuff should have a size of
at least nranks*sendcount elements. In-place operations will happen if sendbuff == recvbuff + rank * sendcount.
recvbuff* may be NULL on ranks other than root.

Parameters
• sendbuff – [in] Data array to send

• recvbuff – [out] Data array to receive into on root.

• sendcount – [in] Number of elements to send per rank

• datatype – [in] Data buffer element datatype

• root – [in] Rank that receives data from all other ranks

• comm – [in] Communicator group object to execute on

• stream – [in] HIP stream to execute collective on

Returns
Result code. See Result Codes for more details.

ncclResult_t ncclScatter(const void *sendbuff, void *recvbuff, size_t recvcount, ncclDataType_t datatype, int
root, ncclComm_t comm, hipStream_t stream)

Scatter.

Scattered over the devices so that recvbuff on rank i will contain the i-th block of the data on root. Assumes send-
count is equal to nranks*recvcount, which means that sendbuff should have a size of at least nranks*recvcount
elements. In-place operations will happen if recvbuff == sendbuff + rank * recvcount.

Parameters

10 Chapter 2. RCCL library specification

RCCL Documentation, Release 2.18.6

• sendbuff – [in] Data array to send (on root rank). May be NULL on other ranks.

• recvbuff – [out] Data array to receive partial subarray into

• recvcount – [in] Number of elements to receive per rank

• datatype – [in] Data buffer element datatype

• root – [in] Rank that scatters data to all other ranks

• comm – [in] Communicator group object to execute on

• stream – [in] HIP stream to execute collective on

Returns
Result code. See Result Codes for more details.

ncclResult_t ncclAllToAll(const void *sendbuff, void *recvbuff, size_t count, ncclDataType_t datatype,
ncclComm_t comm, hipStream_t stream)

All-To-All.

Device (i) send (j)th block of data to device (j) and be placed as (i)th block. Each block for sending/receiving has
count elements, which means that recvbuff and sendbuff should have a size of nranks*count elements. In-place
operation is NOT supported. It is the user’s responsibility to ensure that sendbuff and recvbuff are distinct.

Parameters
• sendbuff – [in] Data array to send (contains blocks for each other rank)

• recvbuff – [out] Data array to receive (contains blocks from each other rank)

• count – [in] Number of elements to send between each pair of ranks

• datatype – [in] Data buffer element datatype

• comm – [in] Communicator group object to execute on

• stream – [in] HIP stream to execute collective on

Returns
Result code. See Result Codes for more details.

2.3 Group semantics

When managing multiple GPUs from a single thread, and since NCCL collective calls may perform inter-CPU syn-
chronization, we need to “group” calls for different ranks/devices into a single call.

Grouping NCCL calls as being part of the same collective operation is done using ncclGroupStart and ncclGroupEnd.
ncclGroupStart will enqueue all collective calls until the ncclGroupEnd call, which will wait for all calls to be complete.
Note that for collective communication, ncclGroupEnd only guarantees that the operations are enqueued on the streams,
not that the operation is effectively done.

Both collective communication and ncclCommInitRank can be used in conjunction of ncclGroupStart/ncclGroupEnd.

ncclResult_t ncclGroupStart()
Group Start.

Start a group call. All calls to RCCL until ncclGroupEnd will be fused into a single RCCL operation. Nothing
will be started on the HIP stream until ncclGroupEnd.

Returns
Result code. See Result Codes for more details.

2.3. Group semantics 11

RCCL Documentation, Release 2.18.6

ncclResult_t ncclGroupEnd()
Group End.

End a group call. Start a fused RCCL operation consisting of all calls since ncclGroupStart. Operations on the
HIP stream depending on the RCCL operations need to be called after ncclGroupEnd.

Returns
Result code. See Result Codes for more details.

2.4 Library functions

ncclResult_t ncclGetVersion(int *version)
Return the RCCL_VERSION_CODE of RCCL in the supplied integer.

This integer is coded with the MAJOR, MINOR and PATCH level of RCCL.

Parameters
version – [out] Pointer to where version will be stored

Returns
Result code. See Result Codes for more details.

const char *ncclGetErrorString(ncclResult_t result)
Returns a string for each result code.

Returns a human-readable string describing the given result code.

Parameters
result – [in] Result code to get description for

Returns
String containing description of result code.

2.5 Types

There are few data structures that are internal to the library. The pointer types to these structures are given below. The
user would need to use these types to create handles and pass them between different library functions.

typedef struct ncclComm *ncclComm_t
Opaque handle to communicator.

A communicator contains information required to facilitate collective communications calls

struct ncclUniqueId
Opaque unique id used to initialize communicators.

The ncclUniqueId must be passed to all participating ranks

12 Chapter 2. RCCL library specification

RCCL Documentation, Release 2.18.6

2.6 Enumerations

This section provides all the enumerations used.

enum ncclResult_t
Result type.

Return codes aside from ncclSuccess indicate that a call has failed

Values:

enumerator ncclSuccess
No error

enumerator ncclUnhandledCudaError
Unhandled HIP error

enumerator ncclSystemError
Unhandled system error

enumerator ncclInternalError
Internal Error - Please report to RCCL developers

enumerator ncclInvalidArgument
Invalid argument

enumerator ncclInvalidUsage
Invalid usage

enumerator ncclRemoteError
Remote process exited or there was a network error

enumerator ncclInProgress
RCCL operation in progress

enumerator ncclNumResults
Number of result types

enum ncclRedOp_t
Reduction operation selector.

Enumeration used to specify the various reduction operations ncclNumOps is the number of built-in ncclRedOp_t
values and serves as the least possible value for dynamic ncclRedOp_t values constructed by ncclRedOpCreate
functions.

ncclMaxRedOp is the largest valid value for ncclRedOp_t and is defined to be the largest signed value (since
compilers are permitted to use signed enums) that won’t grow sizeof(ncclRedOp_t) when compared to previous
RCCL versions to maintain ABI compatibility.

Values:

2.6. Enumerations 13

RCCL Documentation, Release 2.18.6

enumerator ncclSum
Sum

enumerator ncclProd
Product

enumerator ncclMax
Max

enumerator ncclMin
Min

enumerator ncclAvg
Average

enumerator ncclNumOps
Number of built-in reduction ops

enumerator ncclMaxRedOp
Largest value for ncclRedOp_t

enum ncclDataType_t
Data types.

Enumeration of the various supported datatype

Values:

enumerator ncclInt8

enumerator ncclChar

enumerator ncclUint8

enumerator ncclInt32

enumerator ncclInt

enumerator ncclUint32

enumerator ncclInt64

enumerator ncclUint64

enumerator ncclFloat16

14 Chapter 2. RCCL library specification

RCCL Documentation, Release 2.18.6

enumerator ncclHalf

enumerator ncclFloat32

enumerator ncclFloat

enumerator ncclFloat64

enumerator ncclDouble

enumerator ncclBfloat16

enumerator ncclNumTypes

2.6. Enumerations 15

RCCL Documentation, Release 2.18.6

16 Chapter 2. RCCL library specification

CHAPTER

THREE

API LIBRARY

struct ncclConfig_t
Communicator configuration.

Users can assign value to attributes to specify the behavior of a communicator

Public Members

size_t size
Should not be touched

unsigned int magic
Should not be touched

unsigned int version
Should not be touched

int blocking
Whether or not calls should block or not

int cgaClusterSize
Cooperative group array cluster size

int minCTAs
Minimum number of cooperative thread arrays (blocks)

int maxCTAs
Maximum number of cooperative thread arrays (blocks)

const char *netName
Force NCCL to use a specfic network

int splitShare
Allow communicators to share resources

17

RCCL Documentation, Release 2.18.6

struct ncclUniqueId
Opaque unique id used to initialize communicators.

The ncclUniqueId must be passed to all participating ranks

Public Members

char internal[NCCL_UNIQUE_ID_BYTES]
Opaque array>

file mainpage.txt

file nccl.h.in
#include <hip/hip_runtime.h>#include <hip/hip_fp16.h>#include <limits.h>

Defines

NCCL_H_

NCCL_MAJOR

NCCL_MINOR

NCCL_PATCH

NCCL_SUFFIX

NCCL_VERSION_CODE

NCCL_VERSION(X, Y, Z)

RCCL_BFLOAT16

RCCL_GATHER_SCATTER

RCCL_ALLTOALLV

NCCL_COMM_NULL

NCCL_UNIQUE_ID_BYTES

NCCL_CONFIG_UNDEF_INT

18 Chapter 3. API library

RCCL Documentation, Release 2.18.6

NCCL_CONFIG_UNDEF_PTR

NCCL_SPLIT_NOCOLOR

NCCL_CONFIG_INITIALIZER

Typedefs

typedef struct ncclComm *ncclComm_t
Opaque handle to communicator.

A communicator contains information required to facilitate collective communications calls

typedef int mscclAlgoHandle_t
Opaque handle to MSCCL algorithm.

Enums

enum ncclResult_t
Result type.

Return codes aside from ncclSuccess indicate that a call has failed

Values:

enumerator ncclSuccess
No error

enumerator ncclUnhandledCudaError
Unhandled HIP error

enumerator ncclSystemError
Unhandled system error

enumerator ncclInternalError
Internal Error - Please report to RCCL developers

enumerator ncclInvalidArgument
Invalid argument

enumerator ncclInvalidUsage
Invalid usage

enumerator ncclRemoteError
Remote process exited or there was a network error

19

RCCL Documentation, Release 2.18.6

enumerator ncclInProgress
RCCL operation in progress

enumerator ncclNumResults
Number of result types

enum ncclRedOp_dummy_t
Dummy reduction enumeration.

Dummy reduction enumeration used to determine value for ncclMaxRedOp

Values:

enumerator ncclNumOps_dummy

enum ncclRedOp_t
Reduction operation selector.

Enumeration used to specify the various reduction operations ncclNumOps is the number of built-in nc-
clRedOp_t values and serves as the least possible value for dynamic ncclRedOp_t values constructed by
ncclRedOpCreate functions.

ncclMaxRedOp is the largest valid value for ncclRedOp_t and is defined to be the largest signed value
(since compilers are permitted to use signed enums) that won’t grow sizeof(ncclRedOp_t) when compared
to previous RCCL versions to maintain ABI compatibility.

Values:

enumerator ncclSum
Sum

enumerator ncclProd
Product

enumerator ncclMax
Max

enumerator ncclMin
Min

enumerator ncclAvg
Average

enumerator ncclNumOps
Number of built-in reduction ops

enumerator ncclMaxRedOp
Largest value for ncclRedOp_t

20 Chapter 3. API library

RCCL Documentation, Release 2.18.6

enum ncclDataType_t
Data types.

Enumeration of the various supported datatype

Values:

enumerator ncclInt8

enumerator ncclChar

enumerator ncclUint8

enumerator ncclInt32

enumerator ncclInt

enumerator ncclUint32

enumerator ncclInt64

enumerator ncclUint64

enumerator ncclFloat16

enumerator ncclHalf

enumerator ncclFloat32

enumerator ncclFloat

enumerator ncclFloat64

enumerator ncclDouble

enumerator ncclBfloat16

enumerator ncclNumTypes

enum ncclScalarResidence_t
Location and dereferencing logic for scalar arguments.

Enumeration specifying memory location of the scalar argument. Based on where the value is stored, the
argument will be dereferenced either while the collective is running (if in device memory), or before the
ncclRedOpCreate() function returns (if in host memory).

Values:

21

RCCL Documentation, Release 2.18.6

enumerator ncclScalarDevice
Scalar is in device-visible memory

enumerator ncclScalarHostImmediate
Scalar is in host-visible memory

Functions

ncclResult_t ncclGetVersion(int *version)
Return the RCCL_VERSION_CODE of RCCL in the supplied integer.

This integer is coded with the MAJOR, MINOR and PATCH level of RCCL.

Parameters
version – [out] Pointer to where version will be stored

Returns
Result code. See Result Codes for more details.

ncclResult_t ncclGetUniqueId(ncclUniqueId *uniqueId)
Generates an ID for ncclCommInitRank.

Generates an ID to be used in ncclCommInitRank. ncclGetUniqueId should be called once by a single
rank and the ID should be distributed to all ranks in the communicator before using it as a parameter for
ncclCommInitRank.

Parameters
uniqueId – [out] Pointer to where uniqueId will be stored

Returns
Result code. See Result Codes for more details.

ncclResult_t ncclCommInitRankConfig(ncclComm_t *comm, int nranks, ncclUniqueId commId, int rank,
ncclConfig_t *config)

Create a new communicator with config.

Create a new communicator (multi thread/process version) with a configuration set by users. See Com-
municator Configuration for more details. Each rank is associated to a CUDA device, which has to be set
before calling ncclCommInitRank.

Parameters
• comm – [out] Pointer to created communicator

• nranks – [in] Total number of ranks participating in this communicator

• commId – [in] UniqueId required for initialization

• rank – [in] Current rank to create communicator for. [0 to nranks-1]

• config – [in] Pointer to communicator configuration

Returns
Result code. See Result Codes for more details.

ncclResult_t ncclCommInitRank(ncclComm_t *comm, int nranks, ncclUniqueId commId, int rank)
Creates a new communicator (multi thread/process version).

22 Chapter 3. API library

RCCL Documentation, Release 2.18.6

Rank must be between 0 and nranks-1 and unique within a communicator clique. Each rank is associated
to a CUDA device, which has to be set before calling ncclCommInitRank. ncclCommInitRank implic-
itly syncronizes with other ranks, so it must be called by different threads/processes or use ncclGroup-
Start/ncclGroupEnd.

Parameters
• comm – [out] Pointer to created communicator

• nranks – [in] Total number of ranks participating in this communicator

• commId – [in] UniqueId required for initialization

• rank – [in] Current rank to create communicator for

Returns
Result code. See Result Codes for more details.

ncclResult_t ncclCommInitAll(ncclComm_t *comm, int ndev, const int *devlist)
Creates a clique of communicators (single process version).

This is a convenience function to create a single-process communicator clique. Returns an array of
ndev newly initialized communicators in comm. comm should be pre-allocated with size at least
ndev*sizeof(ncclComm_t). If devlist is NULL, the first ndev HIP devices are used. Order of devlist defines
user-order of processors within the communicator.

Parameters
• comm – [out] Pointer to array of created communicators

• ndev – [in] Total number of ranks participating in this communicator

• devlist – [in] Array of GPU device indices to create for

Returns
Result code. See Result Codes for more details.

ncclResult_t ncclCommFinalize(ncclComm_t comm)
Finalize a communicator.

ncclCommFinalize flushes all issued communications and marks communicator state as ncclInProgress.
The state will change to ncclSuccess when the communicator is globally quiescent and related resources
are freed; then, calling ncclCommDestroy can locally free the rest of the resources (e.g. communicator
itself) without blocking.

Parameters
comm – [in] Communicator to finalize

Returns
Result code. See Result Codes for more details.

ncclResult_t ncclCommDestroy(ncclComm_t comm)
Frees local resources associated with communicator object.

Destroy all local resources associated with the passed in communicator object

Parameters
comm – [in] Communicator to destroy

Returns
Result code. See Result Codes for more details.

23

RCCL Documentation, Release 2.18.6

ncclResult_t ncclCommAbort(ncclComm_t comm)
Abort any in-progress calls and destroy the communicator object.

Frees resources associated with communicator object and aborts any operations that might still be running
on the device.

Parameters
comm – [in] Communicator to abort and destroy

Returns
Result code. See Result Codes for more details.

ncclResult_t ncclCommSplit(ncclComm_t comm, int color, int key, ncclComm_t *newcomm, ncclConfig_t
*config)

Create one or more communicators from an existing one.

Creates one or more communicators from an existing one. Ranks with the same color will end up in the same
communicator. Within the new communicator, key will be used to order ranks. NCCL_SPLIT_NOCOLOR
as color will indicate the rank will not be part of any group and will therefore return a NULL communicator.
If config is NULL, the new communicator will inherit the original communicator’s configuration

Parameters
• comm – [in] Original communicator object for this rank

• color – [in] Color to assign this rank

• key – [in] Key used to order ranks within the same new communicator

• newcomm – [out] Pointer to new communicator

• config – [in] Config file for new communicator. May be NULL to inherit from comm

Returns
Result code. See Result Codes for more details.

const char *ncclGetErrorString(ncclResult_t result)
Returns a string for each result code.

Returns a human-readable string describing the given result code.

Parameters
result – [in] Result code to get description for

Returns
String containing description of result code.

const char *ncclGetLastError(ncclComm_t comm)
Returns mesage on last result that occured.

Returns a human-readable message of the last error that occurred.

Parameters
comm – [in] is currently unused and can be set to NULL

Returns
String containing the last result

ncclResult_t ncclCommGetAsyncError(ncclComm_t comm, ncclResult_t *asyncError)
Checks whether the comm has encountered any asynchronous errors.

Query whether the provided communicator has encountered any asynchronous errors

Parameters

24 Chapter 3. API library

RCCL Documentation, Release 2.18.6

• comm – [in] Communicator to query

• asyncError – [out] Pointer to where result code will be stored

Returns
Result code. See Result Codes for more details.

ncclResult_t ncclCommCount(const ncclComm_t comm, int *count)
Gets the number of ranks in the communicator clique.

Returns the number of ranks in the communicator clique (as set during initialization)

Parameters
• comm – [in] Communicator to query

• count – [out] Pointer to where number of ranks will be stored

Returns
Result code. See Result Codes for more details.

ncclResult_t ncclCommCuDevice(const ncclComm_t comm, int *device)
Get the ROCm device index associated with a communicator.

Returns the ROCm device number associated with the provided communicator.

Parameters
• comm – [in] Communicator to query

• device – [out] Pointer to where the associated ROCm device index will be stored

Returns
Result code. See Result Codes for more details.

ncclResult_t ncclCommUserRank(const ncclComm_t comm, int *rank)
Get the rank associated with a communicator.

Returns the user-ordered “rank” associated with the provided communicator.

Parameters
• comm – [in] Communicator to query

• rank – [out] Pointer to where the associated rank will be stored

Returns
Result code. See Result Codes for more details.

ncclResult_t ncclRedOpCreatePreMulSum(ncclRedOp_t *op, void *scalar, ncclDataType_t datatype,
ncclScalarResidence_t residence, ncclComm_t comm)

Create a custom pre-multiplier reduction operator.

Creates a new reduction operator which pre-multiplies input values by a given scalar locally before reducing
them with peer values via summation. For use only with collectives launched against comm and datatype.
The residence* argument indicates how/when the memory pointed to by scalar will be dereferenced. Upon
return, the newly created operator’s handle is stored in op.

Parameters
• op – [out] Pointer to where newly created custom reduction operator is to be stored

• scalar – [in] Pointer to scalar value.

• datatype – [in] Scalar value datatype

25

RCCL Documentation, Release 2.18.6

• residence – [in] Memory type of the scalar value

• comm – [in] Communicator to associate with this custom reduction operator

Returns
Result code. See Result Codes for more details.

ncclResult_t ncclRedOpDestroy(ncclRedOp_t op, ncclComm_t comm)
Destroy custom reduction operator.

Destroys the reduction operator op. The operator must have been created by ncclRedOpCreatePreMul with
the matching communicator comm. An operator may be destroyed as soon as the last RCCL function which
is given that operator returns.

Parameters
• op – [in] Custom reduction operator is to be destroyed

• comm – [in] Communicator associated with this reduction operator

Returns
Result code. See Result Codes for more details.

ncclResult_t ncclReduce(const void *sendbuff, void *recvbuff, size_t count, ncclDataType_t datatype,
ncclRedOp_t op, int root, ncclComm_t comm, hipStream_t stream)

Reduce.

Reduces data arrays of length count in sendbuff into recvbuff using op operation. recvbuff* may be NULL
on all calls except for root device. root* is the rank (not the HIP device) where data will reside after the
operation is complete. In-place operation will happen if sendbuff == recvbuff.

Parameters
• sendbuff – [in] Local device data buffer to be reduced

• recvbuff – [out] Data buffer where result is stored (only for root rank). May be null for
other ranks.

• count – [in] Number of elements in every send buffer

• datatype – [in] Data buffer element datatype

• op – [in] Reduction operator type

• root – [in] Rank where result data array will be stored

• comm – [in] Communicator group object to execute on

• stream – [in] HIP stream to execute collective on

Returns
Result code. See Result Codes for more details.

ncclResult_t ncclBcast(void *buff, size_t count, ncclDataType_t datatype, int root, ncclComm_t comm,
hipStream_t stream)

(Deprecated) Broadcast (in-place)

Copies count values from root to all other devices. root is the rank (not the CUDA device) where data
resides before the operation is started. This operation is implicitly in-place.

Parameters
• buff – [inout] Input array on root to be copied to other ranks. Output array for all ranks.

• count – [in] Number of elements in data buffer

26 Chapter 3. API library

RCCL Documentation, Release 2.18.6

• datatype – [in] Data buffer element datatype

• root – [in] Rank owning buffer to be copied to others

• comm – [in] Communicator group object to execute on

• stream – [in] HIP stream to execute collective on

Returns
Result code. See Result Codes for more details.

ncclResult_t ncclBroadcast(const void *sendbuff, void *recvbuff, size_t count, ncclDataType_t datatype, int
root, ncclComm_t comm, hipStream_t stream)

Broadcast.

Copies count values from sendbuff on root to recvbuff on all devices. root* is the rank (not the HIP device)
where data resides before the operation is started. sendbuff* may be NULL on ranks other than root. In-
place operation will happen if sendbuff == recvbuff.

Parameters
• sendbuff – [in] Data array to copy (if root). May be NULL for other ranks

• recvbuff – [in] Data array to store received array

• count – [in] Number of elements in data buffer

• datatype – [in] Data buffer element datatype

• root – [in] Rank of broadcast root

• comm – [in] Communicator group object to execute on

• stream – [in] HIP stream to execute collective on

Returns
Result code. See Result Codes for more details.

ncclResult_t ncclAllReduce(const void *sendbuff, void *recvbuff, size_t count, ncclDataType_t datatype,
ncclRedOp_t op, ncclComm_t comm, hipStream_t stream)

All-Reduce.

Reduces data arrays of length count in sendbuff using op operation, and leaves identical copies of result on
each recvbuff. In-place operation will happen if sendbuff == recvbuff.

Parameters
• sendbuff – [in] Input data array to reduce

• recvbuff – [out] Data array to store reduced result array

• count – [in] Number of elements in data buffer

• datatype – [in] Data buffer element datatype

• op – [in] Reduction operator

• comm – [in] Communicator group object to execute on

• stream – [in] HIP stream to execute collective on

Returns
Result code. See Result Codes for more details.

27

RCCL Documentation, Release 2.18.6

ncclResult_t ncclReduceScatter(const void *sendbuff, void *recvbuff, size_t recvcount, ncclDataType_t
datatype, ncclRedOp_t op, ncclComm_t comm, hipStream_t stream)

Reduce-Scatter.

Reduces data in sendbuff using op operation and leaves reduced result scattered over the devices so that
recvbuff on rank i will contain the i-th block of the result. Assumes sendcount is equal to nranks*recvcount,
which means that sendbuff should have a size of at least nranks*recvcount elements. In-place operations
will happen if recvbuff == sendbuff + rank * recvcount.

Parameters
• sendbuff – [in] Input data array to reduce

• recvbuff – [out] Data array to store reduced result subarray

• recvcount – [in] Number of elements each rank receives

• datatype – [in] Data buffer element datatype

• op – [in] Reduction operator

• comm – [in] Communicator group object to execute on

• stream – [in] HIP stream to execute collective on

Returns
Result code. See Result Codes for more details.

ncclResult_t ncclAllGather(const void *sendbuff, void *recvbuff, size_t sendcount, ncclDataType_t
datatype, ncclComm_t comm, hipStream_t stream)

All-Gather.

Each device gathers sendcount values from other GPUs into recvbuff, receiving data from rank i at offset
i*sendcount. Assumes recvcount is equal to nranks*sendcount, which means that recvbuff should have a
size of at least nranks*sendcount elements. In-place operations will happen if sendbuff == recvbuff + rank
* sendcount.

Parameters
• sendbuff – [in] Input data array to send

• recvbuff – [out] Data array to store the gathered result

• sendcount – [in] Number of elements each rank sends

• datatype – [in] Data buffer element datatype

• comm – [in] Communicator group object to execute on

• stream – [in] HIP stream to execute collective on

Returns
Result code. See Result Codes for more details.

ncclResult_t ncclSend(const void *sendbuff, size_t count, ncclDataType_t datatype, int peer, ncclComm_t
comm, hipStream_t stream)

Send.

Send data from sendbuff to rank peer. Rank peer needs to call ncclRecv with the same datatype and the
same count as this rank. This operation is blocking for the GPU. If multiple ncclSend and ncclRecv opera-
tions need to progress concurrently to complete, they must be fused within a ncclGroupStart / ncclGroupEnd
section.

Parameters

28 Chapter 3. API library

RCCL Documentation, Release 2.18.6

• sendbuff – [in] Data array to send

• count – [in] Number of elements to send

• datatype – [in] Data buffer element datatype

• peer – [in] Peer rank to send to

• comm – [in] Communicator group object to execute on

• stream – [in] HIP stream to execute collective on

Returns
Result code. See Result Codes for more details.

ncclResult_t ncclRecv(void *recvbuff, size_t count, ncclDataType_t datatype, int peer, ncclComm_t comm,
hipStream_t stream)

Receive.

Receive data from rank peer into recvbuff. Rank peer needs to call ncclSend with the same datatype and the
same count as this rank. This operation is blocking for the GPU. If multiple ncclSend and ncclRecv opera-
tions need to progress concurrently to complete, they must be fused within a ncclGroupStart/ ncclGroupEnd
section.

Parameters
• recvbuff – [out] Data array to receive

• count – [in] Number of elements to receive

• datatype – [in] Data buffer element datatype

• peer – [in] Peer rank to send to

• comm – [in] Communicator group object to execute on

• stream – [in] HIP stream to execute collective on

Returns
Result code. See Result Codes for more details.

ncclResult_t ncclGather(const void *sendbuff, void *recvbuff, size_t sendcount, ncclDataType_t datatype,
int root, ncclComm_t comm, hipStream_t stream)

Gather.

Root device gathers sendcount values from other GPUs into recvbuff, receiving data from rank i at offset
i*sendcount. Assumes recvcount is equal to nranks*sendcount, which means that recvbuff should have a
size of at least nranks*sendcount elements. In-place operations will happen if sendbuff == recvbuff + rank
* sendcount. recvbuff* may be NULL on ranks other than root.

Parameters
• sendbuff – [in] Data array to send

• recvbuff – [out] Data array to receive into on root.

• sendcount – [in] Number of elements to send per rank

• datatype – [in] Data buffer element datatype

• root – [in] Rank that receives data from all other ranks

• comm – [in] Communicator group object to execute on

• stream – [in] HIP stream to execute collective on

29

RCCL Documentation, Release 2.18.6

Returns
Result code. See Result Codes for more details.

ncclResult_t ncclScatter(const void *sendbuff, void *recvbuff, size_t recvcount, ncclDataType_t datatype,
int root, ncclComm_t comm, hipStream_t stream)

Scatter.

Scattered over the devices so that recvbuff on rank i will contain the i-th block of the data on root. As-
sumes sendcount is equal to nranks*recvcount, which means that sendbuff should have a size of at least
nranks*recvcount elements. In-place operations will happen if recvbuff == sendbuff + rank * recvcount.

Parameters
• sendbuff – [in] Data array to send (on root rank). May be NULL on other ranks.

• recvbuff – [out] Data array to receive partial subarray into

• recvcount – [in] Number of elements to receive per rank

• datatype – [in] Data buffer element datatype

• root – [in] Rank that scatters data to all other ranks

• comm – [in] Communicator group object to execute on

• stream – [in] HIP stream to execute collective on

Returns
Result code. See Result Codes for more details.

ncclResult_t ncclAllToAll(const void *sendbuff, void *recvbuff, size_t count, ncclDataType_t datatype,
ncclComm_t comm, hipStream_t stream)

All-To-All.

Device (i) send (j)th block of data to device (j) and be placed as (i)th block. Each block for sending/receiving
has count elements, which means that recvbuff and sendbuff should have a size of nranks*count elements.
In-place operation is NOT supported. It is the user’s responsibility to ensure that sendbuff and recvbuff are
distinct.

Parameters
• sendbuff – [in] Data array to send (contains blocks for each other rank)

• recvbuff – [out] Data array to receive (contains blocks from each other rank)

• count – [in] Number of elements to send between each pair of ranks

• datatype – [in] Data buffer element datatype

• comm – [in] Communicator group object to execute on

• stream – [in] HIP stream to execute collective on

Returns
Result code. See Result Codes for more details.

ncclResult_t ncclAllToAllv(const void *sendbuff, const size_t sendcounts[], const size_t sdispls[], void
*recvbuff, const size_t recvcounts[], const size_t rdispls[], ncclDataType_t
datatype, ncclComm_t comm, hipStream_t stream)

All-To-Allv.

Device (i) sends sendcounts[j] of data from offset sdispls[j] to device (j). At the same time, device (i)
receives recvcounts[j] of data from device (j) to be placed at rdispls[j]. sendcounts, sdispls, recvcounts and
rdispls are all measured in the units of datatype, not bytes. In-place operation will happen if sendbuff ==
recvbuff.

30 Chapter 3. API library

RCCL Documentation, Release 2.18.6

Parameters
• sendbuff – [in] Data array to send (contains blocks for each other rank)

• sendcounts – [in] Array containing number of elements to send to each participating rank

• sdispls – [in] Array of offsets into sendbuff for each participating rank

• recvbuff – [out] Data array to receive (contains blocks from each other rank)

• recvcounts – [in] Array containing number of elements to receive from each participating
rank

• rdispls – [in] Array of offsets into recvbuff for each participating rank

• datatype – [in] Data buffer element datatype

• comm – [in] Communicator group object to execute on

• stream – [in] HIP stream to execute collective on

Returns
Result code. See Result Codes for more details.

ncclResult_t mscclLoadAlgo(const char *mscclAlgoFilePath, mscclAlgoHandle_t *mscclAlgoHandle, int
rank)

MSCCL Load Algorithm.

Load MSCCL algorithm file specified in mscclAlgoFilePath and return its handle via mscclAlgoHandle.
This API is expected to be called by MSCCL scheduler instead of end users.

Parameters
• mscclAlgoFilePath – [in] Path to MSCCL algorithm file

• mscclAlgoHandle – [out] Returned handle to MSCCL algorithm

• rank – [in] Current rank

Returns
Result code. See Result Codes for more details.

ncclResult_t mscclRunAlgo(const void *sendBuff, const size_t sendCounts[], const size_t sDisPls[], void
*recvBuff, const size_t recvCounts[], const size_t rDisPls[], size_t count,
ncclDataType_t dataType, int root, int peer, ncclRedOp_t op, mscclAlgoHandle_t
mscclAlgoHandle, ncclComm_t comm, hipStream_t stream)

MSCCL Run Algorithm.

Run MSCCL algorithm specified by mscclAlgoHandle. The parameter list merges all possible parameters
required by different operations as this is a general-purposed API. This API is expected to be called by
MSCCL scheduler instead of end users.

Parameters
• sendBuff – [in] Data array to send

• sendCounts – [in] Array containing number of elements to send to each participating rank

• sDisPls – [in] Array of offsets into sendbuff for each participating rank

• recvBuff – [out] Data array to receive

• recvCounts – [in] Array containing number of elements to receive from each participating
rank

• rDisPls – [in] Array of offsets into recvbuff for each participating rank

31

RCCL Documentation, Release 2.18.6

• count – [in] Number of elements

• dataType – [in] Data buffer element datatype

• root – [in] Root rank index

• peer – [in] Peer rank index

• op – [in] Reduction operator

• mscclAlgoHandle – [in] Handle to MSCCL algorithm

• comm – [in] Communicator group object to execute on

• stream – [in] HIP stream to execute collective on

Returns
Result code. See Result Codes for more details.

ncclResult_t mscclUnloadAlgo(mscclAlgoHandle_t mscclAlgoHandle)
MSCCL Unload Algorithm.

Unload MSCCL algorithm previous loaded using its handle. This API is expected to be called by MSCCL
scheduler instead of end users.

Parameters
mscclAlgoHandle – [in] Handle to MSCCL algorithm to unload

Returns
Result code. See Result Codes for more details.

ncclResult_t ncclGroupStart()
Group Start.

Start a group call. All calls to RCCL until ncclGroupEnd will be fused into a single RCCL operation.
Nothing will be started on the HIP stream until ncclGroupEnd.

Returns
Result code. See Result Codes for more details.

ncclResult_t ncclGroupEnd()
Group End.

End a group call. Start a fused RCCL operation consisting of all calls since ncclGroupStart. Operations on
the HIP stream depending on the RCCL operations need to be called after ncclGroupEnd.

Returns
Result code. See Result Codes for more details.

group rccl_result_code
The various result codes that RCCL API calls may return

32 Chapter 3. API library

RCCL Documentation, Release 2.18.6

Enums

enum ncclResult_t
Result type.

Return codes aside from ncclSuccess indicate that a call has failed

Values:

enumerator ncclSuccess
No error

enumerator ncclUnhandledCudaError
Unhandled HIP error

enumerator ncclSystemError
Unhandled system error

enumerator ncclInternalError
Internal Error - Please report to RCCL developers

enumerator ncclInvalidArgument
Invalid argument

enumerator ncclInvalidUsage
Invalid usage

enumerator ncclRemoteError
Remote process exited or there was a network error

enumerator ncclInProgress
RCCL operation in progress

enumerator ncclNumResults
Number of result types

group rccl_config_type
Structure that allows for customizing Communicator behavior via ncclCommInitRankConfig

33

RCCL Documentation, Release 2.18.6

Defines

NCCL_CONFIG_INITIALIZER

group rccl_api_version
API call that returns RCCL version

group rccl_api_communicator
API calls that operate on communicators. Communicators objects are used to launch collective communication
operations. Unique ranks between 0 and N-1 must be assigned to each HIP device participating in the same
Communicator. Using the same HIP device for multiple ranks of the same Communicator is not supported at
this time.

group rccl_api_errcheck
API calls that check for errors

group rccl_api_comminfo
API calls that query communicator information

group rccl_api_enumerations
Enumerations used by collective communication calls

Enums

enum ncclRedOp_dummy_t
Dummy reduction enumeration.

Dummy reduction enumeration used to determine value for ncclMaxRedOp

Values:

enumerator ncclNumOps_dummy

enum ncclRedOp_t
Reduction operation selector.

Enumeration used to specify the various reduction operations ncclNumOps is the number of built-in nc-
clRedOp_t values and serves as the least possible value for dynamic ncclRedOp_t values constructed by
ncclRedOpCreate functions.

ncclMaxRedOp is the largest valid value for ncclRedOp_t and is defined to be the largest signed value
(since compilers are permitted to use signed enums) that won’t grow sizeof(ncclRedOp_t) when compared
to previous RCCL versions to maintain ABI compatibility.

Values:

enumerator ncclSum
Sum

34 Chapter 3. API library

RCCL Documentation, Release 2.18.6

enumerator ncclProd
Product

enumerator ncclMax
Max

enumerator ncclMin
Min

enumerator ncclAvg
Average

enumerator ncclNumOps
Number of built-in reduction ops

enumerator ncclMaxRedOp
Largest value for ncclRedOp_t

enum ncclDataType_t
Data types.

Enumeration of the various supported datatype

Values:

enumerator ncclInt8

enumerator ncclChar

enumerator ncclUint8

enumerator ncclInt32

enumerator ncclInt

enumerator ncclUint32

enumerator ncclInt64

enumerator ncclUint64

enumerator ncclFloat16

enumerator ncclHalf

35

RCCL Documentation, Release 2.18.6

enumerator ncclFloat32

enumerator ncclFloat

enumerator ncclFloat64

enumerator ncclDouble

enumerator ncclBfloat16

enumerator ncclNumTypes

group rccl_api_custom_redop
API calls relating to creation/destroying custom reduction operator that pre-multiplies local source arrays prior
to reduction

Enums

enum ncclScalarResidence_t
Location and dereferencing logic for scalar arguments.

Enumeration specifying memory location of the scalar argument. Based on where the value is stored, the
argument will be dereferenced either while the collective is running (if in device memory), or before the
ncclRedOpCreate() function returns (if in host memory).

Values:

enumerator ncclScalarDevice
Scalar is in device-visible memory

enumerator ncclScalarHostImmediate
Scalar is in host-visible memory

group rccl_collective_api
Collective communication operations must be called separately for each communicator in a communicator clique.

They return when operations have been enqueued on the HIP stream. Since they may perform inter-CPU syn-
chronization, each call has to be done from a different thread or process, or need to use Group Semantics (see
below).

group msccl_api
API calls relating to the optional MSCCL algorithm datapath

36 Chapter 3. API library

RCCL Documentation, Release 2.18.6

Typedefs

typedef int mscclAlgoHandle_t
Opaque handle to MSCCL algorithm.

group rccl_group_api
When managing multiple GPUs from a single thread, and since RCCL collective calls may perform inter-CPU
synchronization, we need to “group” calls for different ranks/devices into a single call.

Grouping RCCL calls as being part of the same collective operation is done using ncclGroupStart and nc-
clGroupEnd. ncclGroupStart will enqueue all collective calls until the ncclGroupEnd call, which will wait for all
calls to be complete. Note that for collective communication, ncclGroupEnd only guarantees that the operations
are enqueued on the streams, not that the operation is effectively done.

Both collective communication and ncclCommInitRank can be used in conjunction of ncclGroup-
Start/ncclGroupEnd, but not together.

Group semantics also allow to fuse multiple operations on the same device to improve performance (for aggre-
gated collective calls), or to permit concurrent progress of multiple send/receive operations.

dir src

page index

3.1 Introduction

RCCL (pronounced “Rickle”) is a stand-alone library of standard collective communication routines for GPUs,
implementing all-reduce, all-gather, reduce, broadcast, reduce-scatter, gather, scatter, and all-to-all. There is
also initial support for direct GPU-to-GPU send and receive operations. It has been optimized to achieve high
bandwidth on platforms using PCIe, xGMI as well as networking using InfiniBand Verbs or TCP/IP sockets.
RCCL supports an arbitrary number of GPUs installed in a single node or multiple nodes, and can be used in
either single- or multi-process (e.g., MPI) applications.

The collective operations are implemented using ring and tree algorithms and have been optimized for throughput
and latency. For best performance, small operations can be either batched into larger operations or aggregated
through the API.

3.2 RCCL API Contents

• Version Information

• Result Codes

• Communicator Configuration

• Communicator Initialization/Destruction

• Error Checking Calls

• Communicator Information

• API Enumerations

3.1. Introduction 37

RCCL Documentation, Release 2.18.6

• Custom Reduction Operator

• Collective Communication Operations

• Group semantics

• MSCCL Algorithm

3.3 RCCL API File

• nccl.h.in

38 Chapter 3. API library

CHAPTER

FOUR

LICENSE

Attributions

Contains contributions from NVIDIA.

Copyright (c) 2015-2020, NVIDIA CORPORATION. All rights reserved. Modifications Copyright (c) 2019-2023
Advanced Micro Devices, Inc. All rights reserved. Modifications Copyright (c) Microsoft Corporation. Licensed
under the MIT License.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.

• Neither the name of NVIDIA CORPORATION, Lawrence Berkeley National Laboratory, the U.S.
Department of Energy, nor the names of their contributors may be used to endorse or promote prod-
ucts derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS” AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DI-
RECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (IN-
CLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (IN-
CLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The U.S. Department of Energy funded the development of this software under subcontract 7078610 with
Lawrence Berkeley National Laboratory.

This code also includes files from the NVIDIA Tools Extension SDK project.

See:

https://github.com/NVIDIA/NVTX

for more information and license details.

39

https://github.com/NVIDIA/NVTX

RCCL Documentation, Release 2.18.6

40 Chapter 4. License

CHAPTER

FIVE

ATTRIBUTIONS

Contains contributions from NVIDIA.

Copyright (c) 2015-2020, NVIDIA CORPORATION. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the fol-
lowing conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

• Neither the name of NVIDIA CORPORATION, Lawrence Berkeley National Laboratory, the U.S. Department
of Energy, nor the names of their contributors may be used to endorse or promote products derived from this
software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS” AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABIL-
ITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPY-
RIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABIL-
ITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The U.S. Department of Energy funded the development of this software under subcontract 7078610 with Lawrence
Berkeley National Laboratory.

This code also includes files from the NVIDIA Tools Extension SDK project.

For more information and license details, see https://github.com/NVIDIA/NVTX

41

https://github.com/NVIDIA/NVTX

RCCL Documentation, Release 2.18.6

42 Chapter 5. Attributions

INDEX

M
mscclAlgoHandle_t (C++ type), 19, 37
mscclLoadAlgo (C++ function), 31
mscclRunAlgo (C++ function), 31
mscclUnloadAlgo (C++ function), 32

N
NCCL_COMM_NULL (C macro), 18
NCCL_CONFIG_INITIALIZER (C macro), 19, 34
NCCL_CONFIG_UNDEF_INT (C macro), 18
NCCL_CONFIG_UNDEF_PTR (C macro), 18
NCCL_H_ (C macro), 18
NCCL_MAJOR (C macro), 18
NCCL_MINOR (C macro), 18
NCCL_PATCH (C macro), 18
NCCL_SPLIT_NOCOLOR (C macro), 19
NCCL_SUFFIX (C macro), 18
NCCL_UNIQUE_ID_BYTES (C macro), 18
NCCL_VERSION (C macro), 18
NCCL_VERSION_CODE (C macro), 18
ncclAllGather (C++ function), 9, 28
ncclAllReduce (C++ function), 8, 27
ncclAllToAll (C++ function), 11, 30
ncclAllToAllv (C++ function), 30
ncclBcast (C++ function), 7, 26
ncclBroadcast (C++ function), 8, 27
ncclComm_t (C++ type), 12, 19
ncclCommAbort (C++ function), 6, 23
ncclCommCount (C++ function), 6, 25
ncclCommCuDevice (C++ function), 6, 25
ncclCommDestroy (C++ function), 6, 23
ncclCommFinalize (C++ function), 23
ncclCommGetAsyncError (C++ function), 24
ncclCommInitAll (C++ function), 5, 23
ncclCommInitRank (C++ function), 5, 22
ncclCommInitRankConfig (C++ function), 22
ncclCommSplit (C++ function), 24
ncclCommUserRank (C++ function), 6, 25
ncclConfig_t (C++ struct), 17
ncclConfig_t::blocking (C++ member), 17
ncclConfig_t::cgaClusterSize (C++ member), 17
ncclConfig_t::magic (C++ member), 17

ncclConfig_t::maxCTAs (C++ member), 17
ncclConfig_t::minCTAs (C++ member), 17
ncclConfig_t::netName (C++ member), 17
ncclConfig_t::size (C++ member), 17
ncclConfig_t::splitShare (C++ member), 17
ncclConfig_t::version (C++ member), 17
ncclDataType_t (C++ enum), 14, 20, 35
ncclDataType_t::ncclBfloat16 (C++ enumerator),

15, 21, 36
ncclDataType_t::ncclChar (C++ enumerator), 14,

21, 35
ncclDataType_t::ncclDouble (C++ enumerator),

15, 21, 36
ncclDataType_t::ncclFloat (C++ enumerator), 15,

21, 36
ncclDataType_t::ncclFloat16 (C++ enumerator),

14, 21, 35
ncclDataType_t::ncclFloat32 (C++ enumerator),

15, 21, 35
ncclDataType_t::ncclFloat64 (C++ enumerator),

15, 21, 36
ncclDataType_t::ncclHalf (C++ enumerator), 14,

21, 35
ncclDataType_t::ncclInt (C++ enumerator), 14, 21,

35
ncclDataType_t::ncclInt32 (C++ enumerator), 14,

21, 35
ncclDataType_t::ncclInt64 (C++ enumerator), 14,

21, 35
ncclDataType_t::ncclInt8 (C++ enumerator), 14,

21, 35
ncclDataType_t::ncclNumTypes (C++ enumerator),

15, 21, 36
ncclDataType_t::ncclUint32 (C++ enumerator),

14, 21, 35
ncclDataType_t::ncclUint64 (C++ enumerator),

14, 21, 35
ncclDataType_t::ncclUint8 (C++ enumerator), 14,

21, 35
ncclGather (C++ function), 10, 29
ncclGetErrorString (C++ function), 12, 24
ncclGetLastError (C++ function), 24

43

RCCL Documentation, Release 2.18.6

ncclGetUniqueId (C++ function), 5, 22
ncclGetVersion (C++ function), 12, 22
ncclGroupEnd (C++ function), 11, 32
ncclGroupStart (C++ function), 11, 32
ncclRecv (C++ function), 10, 29
ncclRedOp_dummy_t (C++ enum), 20, 34
ncclRedOp_dummy_t::ncclNumOps_dummy (C++ enu-

merator), 20, 34
ncclRedOp_t (C++ enum), 13, 20, 34
ncclRedOp_t::ncclAvg (C++ enumerator), 14, 20, 35
ncclRedOp_t::ncclMax (C++ enumerator), 14, 20, 35
ncclRedOp_t::ncclMaxRedOp (C++ enumerator), 14,

20, 35
ncclRedOp_t::ncclMin (C++ enumerator), 14, 20, 35
ncclRedOp_t::ncclNumOps (C++ enumerator), 14, 20,

35
ncclRedOp_t::ncclProd (C++ enumerator), 14, 20,

34
ncclRedOp_t::ncclSum (C++ enumerator), 13, 20, 34
ncclRedOpCreatePreMulSum (C++ function), 25
ncclRedOpDestroy (C++ function), 26
ncclReduce (C++ function), 7, 26
ncclReduceScatter (C++ function), 8, 27
ncclResult_t (C++ enum), 13, 19, 33
ncclResult_t::ncclInProgress (C++ enumerator),

13, 19, 33
ncclResult_t::ncclInternalError (C++ enumera-

tor), 13, 19, 33
ncclResult_t::ncclInvalidArgument (C++ enu-

merator), 13, 19, 33
ncclResult_t::ncclInvalidUsage (C++ enumera-

tor), 13, 19, 33
ncclResult_t::ncclNumResults (C++ enumerator),

13, 20, 33
ncclResult_t::ncclRemoteError (C++ enumera-

tor), 13, 19, 33
ncclResult_t::ncclSuccess (C++ enumerator), 13,

19, 33
ncclResult_t::ncclSystemError (C++ enumera-

tor), 13, 19, 33
ncclResult_t::ncclUnhandledCudaError (C++

enumerator), 13, 19, 33
ncclScalarResidence_t (C++ enum), 21, 36
ncclScalarResidence_t::ncclScalarDevice

(C++ enumerator), 21, 36
ncclScalarResidence_t::ncclScalarHostImmediate

(C++ enumerator), 22, 36
ncclScatter (C++ function), 10, 30
ncclSend (C++ function), 9, 28
ncclUniqueId (C++ struct), 12, 17
ncclUniqueId::internal (C++ member), 18

R
RCCL_ALLTOALLV (C macro), 18

RCCL_BFLOAT16 (C macro), 18
RCCL_GATHER_SCATTER (C macro), 18

44 Index

	What is RCCL?
	RCCL library specification
	Communicator functions
	Collective communication operations
	Group semantics
	Library functions
	Types
	Enumerations

	API library
	Introduction
	RCCL API Contents
	RCCL API File

	License
	Attributions
	Index

