Training a model with Primus and PyTorch#

2025-10-23

16 min read time

Applies to Linux

Primus is a unified and flexible LLM training framework designed to streamline training. It streamlines LLM training on AMD Instinct GPUs using a modular, reproducible configuration paradigm. Primus now supports the PyTorch torchtitan backend.

Note

For a unified training solution on AMD GPUs with ROCm, the rocm/pytorch-training Docker Hub registry will be deprecated soon in favor of rocm/primus. The rocm/primus Docker containers will cover PyTorch training ecosystem frameworks, including torchtitan and Megatron-LM.

Primus with the PyTorch torchtitan backend is designed to replace the ROCm PyTorch training workflow. See Training a model with PyTorch on ROCm to see steps to run workloads without Primus.

AMD provides a ready-to-use Docker image for MI355X, MI350X, MI325X, and MI300X GPUs containing essential components for Primus and PyTorch training with Primus Turbo optimizations.

Software component

Version

ROCm

7.0.0

Primus

0.3.0

Primus Turbo

0.1.1

PyTorch

2.9.0.dev20250821+rocm7.0.0.lw.git125803b7

Python

3.10

Transformer Engine

2.2.0.dev0+54dd2bdc

Flash Attention

2.8.3

hipBLASLt

911283acd1

Triton

3.4.0+rocm7.0.0.git56765e8c

RCCL

2.26.6

Software component

Version

ROCm

7.0.0

Primus

0.3.0

Primus Turbo

0.1.1

PyTorch

2.9.0.dev20250821+rocm7.0.0.lw.git125803b7

Python

3.10

Transformer Engine

2.2.0.dev0+54dd2bdc

Flash Attention

2.8.3

hipBLASLt

911283acd1

Triton

3.4.0+rocm7.0.0.git56765e8c

RCCL

2.26.6

Supported models#

The following models are pre-optimized for performance on the AMD Instinct MI325X and MI300X GPUs. Some instructions, commands, and training recommendations in this documentation might vary by model – select one to get started.

Model
Meta Llama
Variant
Llama 3.1 8B
Llama 3.1 70B

See also

For additional workloads, including Llama 3.3, Llama 3.2, Llama 2, GPT OSS, Qwen, and Flux models, see the documentation Training a model with PyTorch on ROCm (without Primus)

System validation#

Before running AI workloads, it’s important to validate that your AMD hardware is configured correctly and performing optimally.

If you have already validated your system settings, including aspects like NUMA auto-balancing, you can skip this step. Otherwise, complete the procedures in the System validation and optimization guide to properly configure your system settings before starting training.

To test for optimal performance, consult the recommended System health benchmarks. This suite of tests will help you verify and fine-tune your system’s configuration.

This Docker image is optimized for specific model configurations outlined below. Performance can vary for other training workloads, as AMD doesn’t test configurations and run conditions outside those described.

Pull the Docker image#

Use the following command to pull the Docker image from Docker Hub.

docker pull rocm/primus:v25.9_gfx950
docker pull rocm/primus:v25.9_gfx942

Run training#

Once the setup is complete, choose between the following two workflows to start benchmarking training. For fine-tuning workloads and multi-node training examples, see Training a model with PyTorch on ROCm (without Primus). For best performance on MI325X, MI350X, and MI355X GPUs, you might need to tweak some configurations (such as batch sizes).

The following run command is tailored to Llama 3.1 8B. See Supported models to switch to another available model.

  1. Clone the ROCm Model Automation and Dashboarding (ROCm/MAD) repository to a local directory and install the required packages on the host machine.

    git clone https://github.com/ROCm/MAD
    cd MAD
    pip install -r requirements.txt
    
  2. For example, use this command to run the performance benchmark test on the Llama 3.1 8B model using one node with the BF16 data type on the host machine.

    export MAD_SECRETS_HFTOKEN="your personal Hugging Face token to access gated models"
    madengine run \
        --tags primus_pyt_train_llama-3.1-8b \
        --keep-model-dir \
        --live-output \
        --timeout 28800
    

    MAD launches a Docker container with the name container_ci-primus_pyt_train_llama-3.1-8b. The latency and throughput reports of the model are collected in ~/MAD/perf.csv.

    Note

    Currently, Primus torchtitan models are run with Primus Turbo enabled for enhanced performance. To disable Primus Turbo, modify respective configuration file scripts/primus/pytorch_train/primus_torchtitan_scripts/llama3_[8B|70B]-[BF16|FP8].yaml.

The following run command is tailored to Llama 3.1 70B. See Supported models to switch to another available model.

  1. Clone the ROCm Model Automation and Dashboarding (ROCm/MAD) repository to a local directory and install the required packages on the host machine.

    git clone https://github.com/ROCm/MAD
    cd MAD
    pip install -r requirements.txt
    
  2. For example, use this command to run the performance benchmark test on the Llama 3.1 70B model using one node with the BF16 data type on the host machine.

    export MAD_SECRETS_HFTOKEN="your personal Hugging Face token to access gated models"
    madengine run \
        --tags primus_pyt_train_llama-3.1-70b \
        --keep-model-dir \
        --live-output \
        --timeout 28800
    

    MAD launches a Docker container with the name container_ci-primus_pyt_train_llama-3.1-70b. The latency and throughput reports of the model are collected in ~/MAD/perf.csv.

    Note

    Currently, Primus torchtitan models are run with Primus Turbo enabled for enhanced performance. To disable Primus Turbo, modify respective configuration file scripts/primus/pytorch_train/primus_torchtitan_scripts/llama3_[8B|70B]-[BF16|FP8].yaml.

The following run commands are tailored to Llama 3.1 8B. See Supported models to switch to another available model.

Download the Docker image and required packages

  1. Pull the appropriate Docker image for your AMD GPU architecture from Docker Hub.

    docker pull rocm/primus:v25.9_gfx950
    
    docker pull rocm/primus:v25.9_gfx942
    
  2. Run the Docker container.

    docker run -it \
        --device /dev/dri \
        --device /dev/kfd \
        --network host \
        --ipc host \
        --group-add video \
        --cap-add SYS_PTRACE \
        --security-opt seccomp=unconfined \
        --privileged \
        -v $HOME:$HOME \
        -v $HOME/.ssh:/root/.ssh \
        --shm-size 64G \
        --name training_env \
        rocm/primus:v25.9_gfx950
    
    docker run -it \
        --device /dev/dri \
        --device /dev/kfd \
        --network host \
        --ipc host \
        --group-add video \
        --cap-add SYS_PTRACE \
        --security-opt seccomp=unconfined \
        --privileged \
        -v $HOME:$HOME \
        -v $HOME/.ssh:/root/.ssh \
        --shm-size 64G \
        --name training_env \
        rocm/primus:v25.9_gfx942
    

    Use these commands if you exit the training_env container and need to return to it.

    docker start training_env
    docker exec -it training_env bash
    

Prepare training datasets and dependencies

The following benchmarking examples require downloading models and datasets from Hugging Face. To ensure successful access to gated repos, set your HF_TOKEN.

export HF_TOKEN=$your_personal_hugging_face_access_token

Pretraining

To get started, navigate to the Primus directory in your container.

cd /workspace/Primus

Now, to start the pretraining benchmark, use the run_pretrain.sh script included with Primus with the appropriate options.

Benchmarking examples

Use the following command to run train Llama 3.1 8B with BF16 precision using Primus torchtitan.

EXP=examples/torchtitan/configs/llama3.1_8B-BF16-pretrain.yaml \
bash examples/run_pretrain.sh \
    --metrics.enable_tensorboard false \
    --profiling.enable_profiling false \
    --training.batch_size 5
EXP=examples/torchtitan/configs/llama3.1_8B-BF16-pretrain.yaml \
bash examples/run_pretrain.sh \
    --metrics.enable_tensorboard false \
    --profiling.enable_profiling false \
    --training.batch_size 6
EXP=examples/torchtitan/configs/llama3.1_8B-BF16-pretrain.yaml \
bash examples/run_pretrain.sh \
    --metrics.enable_tensorboard false \
    --profiling.enable_profiling false \
    --training.batch_size 4

To train Llama 3.1 8B with FP8 precision, use the following command.

EXP=examples/torchtitan/configs/llama3.1_8B-BF16-pretrain.yaml \
bash examples/run_pretrain.sh \
    --metrics.enable_tensorboard false \
    --profiling.enable_profiling false \
    --training.batch_size 8
EXP=examples/torchtitan/configs/llama3.1_8B-FP8-pretrain.yaml \
bash examples/run_pretrain.sh \
    --metrics.enable_tensorboard false \
    --profiling.enable_profiling false \
    --training.batch_size 7
EXP=examples/torchtitan/configs/llama3.1_8B-FP8-pretrain.yaml \
bash examples/run_pretrain.sh \
    --metrics.enable_tensorboard false \
    --profiling.enable_profiling false \
    --training.batch_size 5

Use the following command to run train Llama 3.1 70B with BF16 precision using Primus torchtitan.

EXP=examples/torchtitan/configs/llama3.1_70B-BF16-pretrain.yaml \
bash examples/run_pretrain.sh \
    --metrics.enable_tensorboard false \
    --profiling.enable_profiling false \
    --training.batch_size 8
EXP=examples/torchtitan/configs/llama3.1_70B-BF16-pretrain.yaml \
bash examples/run_pretrain.sh \
    --metrics.enable_tensorboard false \
    --profiling.enable_profiling false \
    --training.batch_size 6
EXP=examples/torchtitan/configs/llama3.1_70B-BF16-pretrain.yaml \
bash examples/run_pretrain.sh \
    --metrics.enable_tensorboard false \
    --profiling.enable_profiling false \
    --training.batch_size 4

To train Llama 3.1 70B with FP8 precision, use the following command.

EXP=examples/torchtitan/configs/llama3.1_70B-FP8-pretrain.yaml \
bash examples/run_pretrain.sh \
    --metrics.enable_tensorboard false \
    --profiling.enable_profiling false \
    --training.batch_size 6
EXP=examples/torchtitan/configs/llama3.1_70B-FP8-pretrain.yaml \
bash examples/run_pretrain.sh \
    --metrics.enable_tensorboard false \
    --profiling.enable_profiling false \
    --training.batch_size 5
EXP=examples/torchtitan/configs/llama3.1_70B-FP8-pretrain.yaml \
bash examples/run_pretrain.sh \
    --metrics.enable_tensorboard false \
    --profiling.enable_profiling false \
    --training.batch_size 3

The following run commands are tailored to Llama 3.1 70B. See Supported models to switch to another available model.

Download the Docker image and required packages

  1. Pull the appropriate Docker image for your AMD GPU architecture from Docker Hub.

    docker pull rocm/primus:v25.9_gfx950
    
    docker pull rocm/primus:v25.9_gfx942
    
  2. Run the Docker container.

    docker run -it \
        --device /dev/dri \
        --device /dev/kfd \
        --network host \
        --ipc host \
        --group-add video \
        --cap-add SYS_PTRACE \
        --security-opt seccomp=unconfined \
        --privileged \
        -v $HOME:$HOME \
        -v $HOME/.ssh:/root/.ssh \
        --shm-size 64G \
        --name training_env \
        rocm/primus:v25.9_gfx950
    
    docker run -it \
        --device /dev/dri \
        --device /dev/kfd \
        --network host \
        --ipc host \
        --group-add video \
        --cap-add SYS_PTRACE \
        --security-opt seccomp=unconfined \
        --privileged \
        -v $HOME:$HOME \
        -v $HOME/.ssh:/root/.ssh \
        --shm-size 64G \
        --name training_env \
        rocm/primus:v25.9_gfx942
    

    Use these commands if you exit the training_env container and need to return to it.

    docker start training_env
    docker exec -it training_env bash
    

Prepare training datasets and dependencies

The following benchmarking examples require downloading models and datasets from Hugging Face. To ensure successful access to gated repos, set your HF_TOKEN.

export HF_TOKEN=$your_personal_hugging_face_access_token

Pretraining

To get started, navigate to the Primus directory in your container.

cd /workspace/Primus

Now, to start the pretraining benchmark, use the run_pretrain.sh script included with Primus with the appropriate options.

Benchmarking examples

Use the following command to run train Llama 3.1 8B with BF16 precision using Primus torchtitan.

EXP=examples/torchtitan/configs/llama3.1_8B-BF16-pretrain.yaml \
bash examples/run_pretrain.sh \
    --metrics.enable_tensorboard false \
    --profiling.enable_profiling false \
    --training.batch_size 5
EXP=examples/torchtitan/configs/llama3.1_8B-BF16-pretrain.yaml \
bash examples/run_pretrain.sh \
    --metrics.enable_tensorboard false \
    --profiling.enable_profiling false \
    --training.batch_size 6
EXP=examples/torchtitan/configs/llama3.1_8B-BF16-pretrain.yaml \
bash examples/run_pretrain.sh \
    --metrics.enable_tensorboard false \
    --profiling.enable_profiling false \
    --training.batch_size 4

To train Llama 3.1 8B with FP8 precision, use the following command.

EXP=examples/torchtitan/configs/llama3.1_8B-BF16-pretrain.yaml \
bash examples/run_pretrain.sh \
    --metrics.enable_tensorboard false \
    --profiling.enable_profiling false \
    --training.batch_size 8
EXP=examples/torchtitan/configs/llama3.1_8B-FP8-pretrain.yaml \
bash examples/run_pretrain.sh \
    --metrics.enable_tensorboard false \
    --profiling.enable_profiling false \
    --training.batch_size 7
EXP=examples/torchtitan/configs/llama3.1_8B-FP8-pretrain.yaml \
bash examples/run_pretrain.sh \
    --metrics.enable_tensorboard false \
    --profiling.enable_profiling false \
    --training.batch_size 5

Use the following command to run train Llama 3.1 70B with BF16 precision using Primus torchtitan.

EXP=examples/torchtitan/configs/llama3.1_70B-BF16-pretrain.yaml \
bash examples/run_pretrain.sh \
    --metrics.enable_tensorboard false \
    --profiling.enable_profiling false \
    --training.batch_size 8
EXP=examples/torchtitan/configs/llama3.1_70B-BF16-pretrain.yaml \
bash examples/run_pretrain.sh \
    --metrics.enable_tensorboard false \
    --profiling.enable_profiling false \
    --training.batch_size 6
EXP=examples/torchtitan/configs/llama3.1_70B-BF16-pretrain.yaml \
bash examples/run_pretrain.sh \
    --metrics.enable_tensorboard false \
    --profiling.enable_profiling false \
    --training.batch_size 4

To train Llama 3.1 70B with FP8 precision, use the following command.

EXP=examples/torchtitan/configs/llama3.1_70B-FP8-pretrain.yaml \
bash examples/run_pretrain.sh \
    --metrics.enable_tensorboard false \
    --profiling.enable_profiling false \
    --training.batch_size 6
EXP=examples/torchtitan/configs/llama3.1_70B-FP8-pretrain.yaml \
bash examples/run_pretrain.sh \
    --metrics.enable_tensorboard false \
    --profiling.enable_profiling false \
    --training.batch_size 5
EXP=examples/torchtitan/configs/llama3.1_70B-FP8-pretrain.yaml \
bash examples/run_pretrain.sh \
    --metrics.enable_tensorboard false \
    --profiling.enable_profiling false \
    --training.batch_size 3

The following run commands are tailored to Llama 3.1 8B. See Supported models to switch to another available model.

Download the Docker image and required packages

  1. Pull the appropriate Docker image for your AMD GPU architecture from Docker Hub.

    docker pull rocm/primus:v25.9_gfx950
    
    docker pull rocm/primus:v25.9_gfx942
    
  2. Run the Docker container.

    docker run -it \
        --device /dev/dri \
        --device /dev/kfd \
        --network host \
        --ipc host \
        --group-add video \
        --cap-add SYS_PTRACE \
        --security-opt seccomp=unconfined \
        --privileged \
        -v $HOME:$HOME \
        -v $HOME/.ssh:/root/.ssh \
        --shm-size 64G \
        --name training_env \
        rocm/primus:v25.9_gfx950
    
    docker run -it \
        --device /dev/dri \
        --device /dev/kfd \
        --network host \
        --ipc host \
        --group-add video \
        --cap-add SYS_PTRACE \
        --security-opt seccomp=unconfined \
        --privileged \
        -v $HOME:$HOME \
        -v $HOME/.ssh:/root/.ssh \
        --shm-size 64G \
        --name training_env \
        rocm/primus:v25.9_gfx942
    

    Use these commands if you exit the training_env container and need to return to it.

    docker start training_env
    docker exec -it training_env bash
    
  3. Navigate to the torchtitan workspace directory.

    cd /workspace/torchtitan
    

Download the tokenizer

  1. The following benchmarking examples require downloading models and datasets from Hugging Face. To ensure successful access to gated repos, set your HF_TOKEN.

    export HF_TOKEN=$your_personal_hugging_face_access_token
    
  2. Download the tokenizer for your model.

    python3 scripts/download_tokenizer.py \
       --repo_id meta-llama/Llama-3.1-8B \
       --tokenizer_path "original" \
       --hf_token=${HF_TOKEN}
    

Pretraining examples

Run the training script with the appropriate configuration file.

For train with BF16 precicion, use the following command:

CONFIG_FILE=./llama3_8b_fsdp_bf16.toml \
.run_train.sh

For train with BF16 precicion, use the following command:

CONFIG_FILE=./llama3_8b_fsdp_fp8.toml \
.run_train.sh

The following run commands are tailored to Llama 3.1 70B. See Supported models to switch to another available model.

Download the Docker image and required packages

  1. Pull the appropriate Docker image for your AMD GPU architecture from Docker Hub.

    docker pull rocm/primus:v25.9_gfx950
    
    docker pull rocm/primus:v25.9_gfx942
    
  2. Run the Docker container.

    docker run -it \
        --device /dev/dri \
        --device /dev/kfd \
        --network host \
        --ipc host \
        --group-add video \
        --cap-add SYS_PTRACE \
        --security-opt seccomp=unconfined \
        --privileged \
        -v $HOME:$HOME \
        -v $HOME/.ssh:/root/.ssh \
        --shm-size 64G \
        --name training_env \
        rocm/primus:v25.9_gfx950
    
    docker run -it \
        --device /dev/dri \
        --device /dev/kfd \
        --network host \
        --ipc host \
        --group-add video \
        --cap-add SYS_PTRACE \
        --security-opt seccomp=unconfined \
        --privileged \
        -v $HOME:$HOME \
        -v $HOME/.ssh:/root/.ssh \
        --shm-size 64G \
        --name training_env \
        rocm/primus:v25.9_gfx942
    

    Use these commands if you exit the training_env container and need to return to it.

    docker start training_env
    docker exec -it training_env bash
    
  3. Navigate to the torchtitan workspace directory.

    cd /workspace/torchtitan
    

Download the tokenizer

  1. The following benchmarking examples require downloading models and datasets from Hugging Face. To ensure successful access to gated repos, set your HF_TOKEN.

    export HF_TOKEN=$your_personal_hugging_face_access_token
    
  2. Download the tokenizer for your model.

    python3 scripts/download_tokenizer.py \
       --repo_id meta-llama/Llama-3.1-70B \
       --tokenizer_path "original" \
       --hf_token=${HF_TOKEN}
    

Pretraining examples

Run the training script with the appropriate configuration file.

For train with BF16 precicion, use the following command:

CONFIG_FILE=./llama3_70b_fsdp_bf16.toml \
.run_train.sh

For train with BF16 precicion, use the following command:

CONFIG_FILE=./llama3_70b_fsdp_fp8.toml \
.run_train.sh

Known issues#

PyTorch Profiler may produce inaccurate traces when CPU activity profiling is enabled.

Further reading#

Previous versions#

See PyTorch training performance testing version history to find documentation for previous releases of the ROCm/pytorch-training Docker image.