21 std::vector<ck_tile::long_index_t> conv_strides,
22 std::vector<ck_tile::long_index_t> conv_dilations,
23 std::vector<ck_tile::long_index_t> in_left_pads,
24 std::vector<ck_tile::long_index_t>)
36 throw std::runtime_error(
"wrong! inconsistent dimension");
39 if constexpr(NDimSpatial == 1)
41 auto func = [&](
auto g,
auto n,
auto c,
auto wi) {
48 for(std::size_t x = 0; x < X; ++x)
54 if(w_tmp % conv_strides[0] == 0)
59 if(wo >= 0 && ck_tile::type_convert<std::size_t>(wo) < Wo)
61 for(std::size_t k = 0; k < K; ++k)
63 OutDataType v_out = output(g, n, k, wo);
64 WeiDataType v_wei = weight(g, k, c, x);
65 v_acc += ck_tile::type_convert<float>(v_out) *
66 ck_tile::type_convert<float>(v_wei);
71 InDataType v_acc_converted = ck_tile::type_convert<InDataType>(v_acc);
72 input(g, n, c, wi) = v_acc_converted;
79 input.
get_lengths()[3])(std::thread::hardware_concurrency());
81 else if constexpr(NDimSpatial == 2)
83 auto func = [&](
auto g,
auto n,
auto c,
auto hi,
auto wi) {
93 for(std::size_t y = 0; y < Y; ++y)
98 if(h_tmp % conv_strides[0] == 0)
102 if(ho >= 0 && ck_tile::type_convert<std::size_t>(ho) < Ho)
104 for(std::size_t x = 0; x < X; ++x)
109 if(w_tmp % conv_strides[1] == 0)
114 if(wo >= 0 && ck_tile::type_convert<std::size_t>(wo) < Wo)
116 for(std::size_t k = 0; k < K; ++k)
118 OutDataType v_out = output(g, n, k, ho, wo);
119 WeiDataType v_wei = weight(g, k, c, y, x);
120 v_acc += ck_tile::type_convert<float>(v_out) *
121 ck_tile::type_convert<float>(v_wei);
129 InDataType v_acc_converted = ck_tile::type_convert<InDataType>(v_acc);
130 input(g, n, c, hi, wi) = v_acc_converted;
138 input.
get_lengths()[4])(std::thread::hardware_concurrency());
140 else if constexpr(NDimSpatial == 3)
142 auto func = [&](
auto g,
auto n,
auto c,
auto di,
auto hi,
auto wi) {
154 for(std::size_t z = 0; z < Z; ++z)
159 if(d_tmp % conv_strides[0] == 0)
163 if(do_ >= 0 && ck_tile::type_convert<std::size_t>(do_) < Do)
165 for(std::size_t y = 0; y < Y; ++y)
170 if(h_tmp % conv_strides[1] == 0)
174 if(ho >= 0 && ck_tile::type_convert<std::size_t>(ho) < Ho)
176 for(std::size_t x = 0; x < X; ++x)
184 if(w_tmp % conv_strides[2] == 0)
190 ck_tile::type_convert<std::size_t>(wo) < Wo)
192 for(std::size_t k = 0; k < K; ++k)
195 output(g, n, k, do_, ho, wo);
196 WeiDataType v_wei = weight(g, k, c, z, y, x);
197 v_acc += ck_tile::type_convert<float>(v_out) *
198 ck_tile::type_convert<float>(v_wei);
209 InDataType v_acc_converted = ck_tile::type_convert<InDataType>(v_acc);
210 input(g, n, c, di, hi, wi) = v_acc_converted;
219 input.
get_lengths()[5])(std::thread::hardware_concurrency());
223 throw std::runtime_error(
224 "Ref_conv_bwd_data: number of dimensions must be between 1 and 3.");
#define CK_TILE_HOST
Definition: config.hpp:40
Definition: cluster_descriptor.hpp:13
CK_TILE_HOST auto make_ParallelTensorFunctor(F f, Xs... xs)
Definition: host_tensor.hpp:329
int32_t index_t
Definition: integer.hpp:9
CK_TILE_HOST void reference_grouped_conv_bwd_data(HostTensor< InDataType > &input, const HostTensor< WeiDataType > &weight, const HostTensor< OutDataType > &output, std::vector< ck_tile::long_index_t > conv_strides, std::vector< ck_tile::long_index_t > conv_dilations, std::vector< ck_tile::long_index_t > in_left_pads, std::vector< ck_tile::long_index_t >)
Definition: reference_grouped_conv_bwd_data.hpp:18
int64_t long_index_t
Definition: integer.hpp:11
Definition: host_tensor.hpp:336
decltype(auto) get_lengths() const
Definition: host_tensor.hpp:390
std::size_t get_num_of_dimension() const
Definition: host_tensor.hpp:396