This page contains proposed changes for a future release of ROCm. Read the latest Linux release of ROCm documentation for your production environments.

/home/docs/checkouts/readthedocs.org/user_builds/advanced-micro-devices-hip/checkouts/llvm-project/clang/lib/Headers/__clang_hip_math.h Source File

/home/docs/checkouts/readthedocs.org/user_builds/advanced-micro-devices-hip/checkouts/llvm-project/clang/lib/Headers/__clang_hip_math.h Source File#

HIP Runtime API Reference: /home/docs/checkouts/readthedocs.org/user_builds/advanced-micro-devices-hip/checkouts/llvm-project/clang/lib/Headers/__clang_hip_math.h Source File
__clang_hip_math.h
Go to the documentation of this file.
1 /*===---- __clang_hip_math.h - Device-side HIP math support ----------------===
2  *
3  * Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  * See https://llvm.org/LICENSE.txt for license information.
5  * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  *
7  *===-----------------------------------------------------------------------===
8  */
9 #ifndef __CLANG_HIP_MATH_H__
10 #define __CLANG_HIP_MATH_H__
11 
12 #if !defined(__HIP__) && !defined(__OPENMP_AMDGCN__)
13 #error "This file is for HIP and OpenMP AMDGCN device compilation only."
14 #endif
15 
16 #if !defined(__HIPCC_RTC__)
17 #include <limits.h>
18 #include <stdint.h>
19 #ifdef __OPENMP_AMDGCN__
20 #include <omp.h>
21 #endif
22 #endif // !defined(__HIPCC_RTC__)
23 
24 #pragma push_macro("__DEVICE__")
25 
26 #ifdef __OPENMP_AMDGCN__
27 #define __DEVICE__ static inline __attribute__((always_inline, nothrow))
28 #else
29 #define __DEVICE__ static __device__ inline __attribute__((always_inline))
30 #endif
31 
32 // Device library provides fast low precision and slow full-recision
33 // implementations for some functions. Which one gets selected depends on
34 // __CLANG_GPU_APPROX_TRANSCENDENTALS__ which gets defined by clang if
35 // -ffast-math or -fgpu-approx-transcendentals are in effect.
36 #pragma push_macro("__FAST_OR_SLOW")
37 #if defined(__CLANG_GPU_APPROX_TRANSCENDENTALS__)
38 #define __FAST_OR_SLOW(fast, slow) fast
39 #else
40 #define __FAST_OR_SLOW(fast, slow) slow
41 #endif
42 
43 // A few functions return bool type starting only in C++11.
44 #pragma push_macro("__RETURN_TYPE")
45 #ifdef __OPENMP_AMDGCN__
46 #define __RETURN_TYPE int
47 #else
48 #if defined(__cplusplus)
49 #define __RETURN_TYPE bool
50 #else
51 #define __RETURN_TYPE int
52 #endif
53 #endif // __OPENMP_AMDGCN__
54 
55 #if defined (__cplusplus) && __cplusplus < 201103L
56 // emulate static_assert on type sizes
57 template<bool>
58 struct __compare_result{};
59 template<>
60 struct __compare_result<true> {
61  static const __device__ bool valid;
62 };
63 
65 void __suppress_unused_warning(bool b){};
66 template <unsigned int S, unsigned int T>
67 __DEVICE__ void __static_assert_equal_size() {
68  __suppress_unused_warning(__compare_result<S == T>::valid);
69 }
70 
71 #define __static_assert_type_size_equal(A, B) \
72  __static_assert_equal_size<A,B>()
73 
74 #else
75 #define __static_assert_type_size_equal(A,B) \
76  static_assert((A) == (B), "")
77 
78 #endif
79 
87 
91 
94 uint64_t __make_mantissa_base8(const char *__tagp __attribute__((nonnull))) {
95  uint64_t __r = 0;
96  while (*__tagp != '\0') {
97  char __tmp = *__tagp;
98 
99  if (__tmp >= '0' && __tmp <= '7')
100  __r = (__r * 8u) + __tmp - '0';
101  else
102  return 0;
103 
104  ++__tagp;
105  }
106 
107  return __r;
108 }
111 uint64_t __make_mantissa_base10(const char *__tagp __attribute__((nonnull))) {
112  uint64_t __r = 0;
113  while (*__tagp != '\0') {
114  char __tmp = *__tagp;
115 
116  if (__tmp >= '0' && __tmp <= '9')
117  __r = (__r * 10u) + __tmp - '0';
118  else
119  return 0;
120 
121  ++__tagp;
122  }
123 
124  return __r;
125 }
128 uint64_t __make_mantissa_base16(const char *__tagp __attribute__((nonnull))) {
129  uint64_t __r = 0;
130  while (*__tagp != '\0') {
131  char __tmp = *__tagp;
132 
133  if (__tmp >= '0' && __tmp <= '9')
134  __r = (__r * 16u) + __tmp - '0';
135  else if (__tmp >= 'a' && __tmp <= 'f')
136  __r = (__r * 16u) + __tmp - 'a' + 10;
137  else if (__tmp >= 'A' && __tmp <= 'F')
138  __r = (__r * 16u) + __tmp - 'A' + 10;
139  else
140  return 0;
141 
142  ++__tagp;
143  }
144 
145  return __r;
146 }
149 uint64_t __make_mantissa(const char *__tagp __attribute__((nonnull))) {
150  if (*__tagp == '0') {
151  ++__tagp;
152 
153  if (*__tagp == 'x' || *__tagp == 'X')
154  return __make_mantissa_base16(__tagp);
155  else
156  return __make_mantissa_base8(__tagp);
157  }
158 
159  return __make_mantissa_base10(__tagp);
160 }
162 
166 
167 // BEGIN FLOAT
168 
169 // BEGIN INTRINSICS
170 
173 float __cosf(float __x) { return __ocml_native_cos_f32(__x); }
176 float __exp10f(float __x) {
177  const float __log2_10 = 0x1.a934f0p+1f;
178  return __builtin_amdgcn_exp2f(__log2_10 * __x);
179 }
182 float __expf(float __x) {
183  const float __log2_e = 0x1.715476p+0;
184  return __builtin_amdgcn_exp2f(__log2_e * __x);
185 }
186 
187 #if defined OCML_BASIC_ROUNDED_OPERATIONS
190 float __fadd_rd(float __x, float __y) { return __ocml_add_rtn_f32(__x, __y); }
193 float __fadd_rn(float __x, float __y) { return __ocml_add_rte_f32(__x, __y); }
196 float __fadd_ru(float __x, float __y) { return __ocml_add_rtp_f32(__x, __y); }
199 float __fadd_rz(float __x, float __y) { return __ocml_add_rtz_f32(__x, __y); }
200 #else
203 float __fadd_rn(float __x, float __y) { return __x + __y; }
204 #endif
205 
206 #if defined OCML_BASIC_ROUNDED_OPERATIONS
209 float __fdiv_rd(float __x, float __y) { return __ocml_div_rtn_f32(__x, __y); }
212 float __fdiv_rn(float __x, float __y) { return __ocml_div_rte_f32(__x, __y); }
215 float __fdiv_ru(float __x, float __y) { return __ocml_div_rtp_f32(__x, __y); }
218 float __fdiv_rz(float __x, float __y) { return __ocml_div_rtz_f32(__x, __y); }
219 #else
222 float __fdiv_rn(float __x, float __y) { return __x / __y; }
223 #endif
226 float __fdividef(float __x, float __y) { return __x / __y; }
227 
228 #if defined OCML_BASIC_ROUNDED_OPERATIONS
231 float __fmaf_rd(float __x, float __y, float __z) {
232  return __ocml_fma_rtn_f32(__x, __y, __z);
233 }
236 float __fmaf_rn(float __x, float __y, float __z) {
237  return __ocml_fma_rte_f32(__x, __y, __z);
238 }
241 float __fmaf_ru(float __x, float __y, float __z) {
242  return __ocml_fma_rtp_f32(__x, __y, __z);
243 }
246 float __fmaf_rz(float __x, float __y, float __z) {
247  return __ocml_fma_rtz_f32(__x, __y, __z);
248 }
249 #else
252 float __fmaf_rn(float __x, float __y, float __z) {
253  return __builtin_fmaf(__x, __y, __z);
254 }
255 #endif
256 
257 #if defined OCML_BASIC_ROUNDED_OPERATIONS
260 float __fmul_rd(float __x, float __y) { return __ocml_mul_rtn_f32(__x, __y); }
263 float __fmul_rn(float __x, float __y) { return __ocml_mul_rte_f32(__x, __y); }
266 float __fmul_ru(float __x, float __y) { return __ocml_mul_rtp_f32(__x, __y); }
269 float __fmul_rz(float __x, float __y) { return __ocml_mul_rtz_f32(__x, __y); }
270 #else
273 float __fmul_rn(float __x, float __y) { return __x * __y; }
274 #endif
275 
276 #if defined OCML_BASIC_ROUNDED_OPERATIONS
279 float __frcp_rd(float __x) { return __ocml_div_rtn_f32(1.0f, __x); }
282 float __frcp_rn(float __x) { return __ocml_div_rte_f32(1.0f, __x); }
285 float __frcp_ru(float __x) { return __ocml_div_rtp_f32(1.0f, __x); }
288 float __frcp_rz(float __x) { return __ocml_div_rtz_f32(1.0f, __x); }
289 #else
292 float __frcp_rn(float __x) { return 1.0f / __x; }
293 #endif
294 
297 float __frsqrt_rn(float __x) { return __builtin_amdgcn_rsqf(__x); }
298 
299 #if defined OCML_BASIC_ROUNDED_OPERATIONS
302 float __fsqrt_rd(float __x) { return __ocml_sqrt_rtn_f32(__x); }
305 float __fsqrt_rn(float __x) { return __ocml_sqrt_rte_f32(__x); }
308 float __fsqrt_ru(float __x) { return __ocml_sqrt_rtp_f32(__x); }
311 float __fsqrt_rz(float __x) { return __ocml_sqrt_rtz_f32(__x); }
312 #else
315 float __fsqrt_rn(float __x) { return __ocml_native_sqrt_f32(__x); }
316 #endif
317 
318 #if defined OCML_BASIC_ROUNDED_OPERATIONS
321 float __fsub_rd(float __x, float __y) { return __ocml_sub_rtn_f32(__x, __y); }
324 float __fsub_rn(float __x, float __y) { return __ocml_sub_rte_f32(__x, __y); }
327 float __fsub_ru(float __x, float __y) { return __ocml_sub_rtp_f32(__x, __y); }
330 float __fsub_rz(float __x, float __y) { return __ocml_sub_rtz_f32(__x, __y); }
331 #else
334 float __fsub_rn(float __x, float __y) { return __x - __y; }
335 #endif
336 
339 float __log10f(float __x) { return __builtin_log10f(__x); }
342 float __log2f(float __x) { return __builtin_amdgcn_logf(__x); }
345 float __logf(float __x) { return __builtin_logf(__x); }
348 float __powf(float __x, float __y) { return __ocml_pow_f32(__x, __y); }
351 float __saturatef(float __x) { return (__x < 0) ? 0 : ((__x > 1) ? 1 : __x); }
354 void __sincosf(float __x, float *__sinptr, float *__cosptr) {
355  *__sinptr = __ocml_native_sin_f32(__x);
356  *__cosptr = __ocml_native_cos_f32(__x);
357 }
360 float __sinf(float __x) { return __ocml_native_sin_f32(__x); }
363 float __tanf(float __x) {
364  return __sinf(__x) * __builtin_amdgcn_rcpf(__cosf(__x));
365 }
366 // END INTRINSICS
367 
369 
370 #if defined(__cplusplus)
373 int abs(int __x) {
374  return __builtin_abs(__x);
375 }
378 long labs(long __x) {
379  return __builtin_labs(__x);
380 }
383 long long llabs(long long __x) {
384  return __builtin_llabs(__x);
385 }
386 #endif
387 
391 
394 float acosf(float __x) { return __ocml_acos_f32(__x); }
397 float acoshf(float __x) { return __ocml_acosh_f32(__x); }
400 float asinf(float __x) { return __ocml_asin_f32(__x); }
403 float asinhf(float __x) { return __ocml_asinh_f32(__x); }
406 float atan2f(float __x, float __y) { return __ocml_atan2_f32(__x, __y); }
409 float atanf(float __x) { return __ocml_atan_f32(__x); }
412 float atanhf(float __x) { return __ocml_atanh_f32(__x); }
415 float cbrtf(float __x) { return __ocml_cbrt_f32(__x); }
418 float ceilf(float __x) { return __builtin_ceilf(__x); }
421 float copysignf(float __x, float __y) { return __builtin_copysignf(__x, __y); }
424 float cosf(float __x) { return __FAST_OR_SLOW(__cosf, __ocml_cos_f32)(__x); }
427 float coshf(float __x) { return __ocml_cosh_f32(__x); }
430 float cospif(float __x) { return __ocml_cospi_f32(__x); }
433 float cyl_bessel_i0f(float __x) { return __ocml_i0_f32(__x); }
436 float cyl_bessel_i1f(float __x) { return __ocml_i1_f32(__x); }
439 float erfcf(float __x) { return __ocml_erfc_f32(__x); }
442 float erfcinvf(float __x) { return __ocml_erfcinv_f32(__x); }
445 float erfcxf(float __x) { return __ocml_erfcx_f32(__x); }
448 float erff(float __x) { return __ocml_erf_f32(__x); }
451 float erfinvf(float __x) { return __ocml_erfinv_f32(__x); }
454 float exp10f(float __x) { return __ocml_exp10_f32(__x); }
457 float exp2f(float __x) { return __builtin_exp2f(__x); }
460 float expf(float __x) { return __builtin_expf(__x); }
463 float expm1f(float __x) { return __ocml_expm1_f32(__x); }
466 float fabsf(float __x) { return __builtin_fabsf(__x); }
469 float fdimf(float __x, float __y) { return __ocml_fdim_f32(__x, __y); }
472 float fdividef(float __x, float __y) { return __x / __y; }
475 float floorf(float __x) { return __builtin_floorf(__x); }
478 float fmaf(float __x, float __y, float __z) {
479  return __builtin_fmaf(__x, __y, __z);
480 }
483 float fmaxf(float __x, float __y) { return __builtin_fmaxf(__x, __y); }
486 float fminf(float __x, float __y) { return __builtin_fminf(__x, __y); }
489 float fmodf(float __x, float __y) { return __ocml_fmod_f32(__x, __y); }
492 float frexpf(float __x, int *__nptr) {
493  return __builtin_frexpf(__x, __nptr);
494 }
497 float hypotf(float __x, float __y) { return __ocml_hypot_f32(__x, __y); }
500 int ilogbf(float __x) { return __ocml_ilogb_f32(__x); }
503 __RETURN_TYPE __finitef(float __x) { return __builtin_isfinite(__x); }
506 __RETURN_TYPE __isinff(float __x) { return __builtin_isinf(__x); }
509 __RETURN_TYPE __isnanf(float __x) { return __builtin_isnan(__x); }
512 float j0f(float __x) { return __ocml_j0_f32(__x); }
515 float j1f(float __x) { return __ocml_j1_f32(__x); }
518 float jnf(int __n, float __x) { // TODO: we could use Ahmes multiplication
519  // and the Miller & Brown algorithm
520  // for linear recurrences to get O(log n) steps, but it's unclear if
521  // it'd be beneficial in this case.
522  if (__n == 0)
523  return j0f(__x);
524  if (__n == 1)
525  return j1f(__x);
526 
527  float __x0 = j0f(__x);
528  float __x1 = j1f(__x);
529  for (int __i = 1; __i < __n; ++__i) {
530  float __x2 = (2 * __i) / __x * __x1 - __x0;
531  __x0 = __x1;
532  __x1 = __x2;
533  }
534 
535  return __x1;
536 }
539 float ldexpf(float __x, int __e) { return __builtin_amdgcn_ldexpf(__x, __e); }
542 float lgammaf(float __x) { return __ocml_lgamma_f32(__x); }
545 long long int llrintf(float __x) { return __builtin_rintf(__x); }
548 long long int llroundf(float __x) { return __builtin_roundf(__x); }
551 float log10f(float __x) { return __builtin_log10f(__x); }
554 float log1pf(float __x) { return __ocml_log1p_f32(__x); }
557 float log2f(float __x) { return __FAST_OR_SLOW(__log2f, __ocml_log2_f32)(__x); }
560 float logbf(float __x) { return __ocml_logb_f32(__x); }
563 float logf(float __x) { return __FAST_OR_SLOW(__logf, __ocml_log_f32)(__x); }
566 long int lrintf(float __x) { return __builtin_rintf(__x); }
569 long int lroundf(float __x) { return __builtin_roundf(__x); }
572 float modff(float __x, float *__iptr) {
573  float __tmp;
574 #ifdef __OPENMP_AMDGCN__
575 #pragma omp allocate(__tmp) allocator(omp_thread_mem_alloc)
576 #endif
577  float __r =
578  __ocml_modf_f32(__x, (__attribute__((address_space(5))) float *)&__tmp);
579  *__iptr = __tmp;
580  return __r;
581 }
584 float nanf(const char *__tagp __attribute__((nonnull))) {
585  union {
586  float val;
587  struct ieee_float {
588  unsigned int mantissa : 22;
589  unsigned int quiet : 1;
590  unsigned int exponent : 8;
591  unsigned int sign : 1;
592  } bits;
593  } __tmp;
594  __static_assert_type_size_equal(sizeof(__tmp.val), sizeof(__tmp.bits));
595 
596  __tmp.bits.sign = 0u;
597  __tmp.bits.exponent = ~0u;
598  __tmp.bits.quiet = 1u;
599  __tmp.bits.mantissa = __make_mantissa(__tagp);
600 
601  return __tmp.val;
602 }
605 float nearbyintf(float __x) { return __builtin_nearbyintf(__x); }
608 float nextafterf(float __x, float __y) {
609  return __ocml_nextafter_f32(__x, __y);
610 }
613 float norm3df(float __x, float __y, float __z) {
614  return __ocml_len3_f32(__x, __y, __z);
615 }
618 float norm4df(float __x, float __y, float __z, float __w) {
619  return __ocml_len4_f32(__x, __y, __z, __w);
620 }
623 float normcdff(float __x) { return __ocml_ncdf_f32(__x); }
626 float normcdfinvf(float __x) { return __ocml_ncdfinv_f32(__x); }
629 float normf(int __dim,
630  const float *__a) { // TODO: placeholder until OCML adds support.
631  float __r = 0;
632  while (__dim--) {
633  __r += __a[0] * __a[0];
634  ++__a;
635  }
636 
637  return __builtin_sqrtf(__r);
638 }
641 float powf(float __x, float __y) { return __ocml_pow_f32(__x, __y); }
644 float powif(float __x, int __y) { return __ocml_pown_f32(__x, __y); }
647 float rcbrtf(float __x) { return __ocml_rcbrt_f32(__x); }
650 float remainderf(float __x, float __y) {
651  return __ocml_remainder_f32(__x, __y);
652 }
655 float remquof(float __x, float __y, int *__quo) {
656  int __tmp;
657 #ifdef __OPENMP_AMDGCN__
658 #pragma omp allocate(__tmp) allocator(omp_thread_mem_alloc)
659 #endif
660  float __r = __ocml_remquo_f32(
661  __x, __y, (__attribute__((address_space(5))) int *)&__tmp);
662  *__quo = __tmp;
663 
664  return __r;
665 }
668 float rhypotf(float __x, float __y) { return __ocml_rhypot_f32(__x, __y); }
671 float rintf(float __x) { return __builtin_rintf(__x); }
674 float rnorm3df(float __x, float __y, float __z) {
675  return __ocml_rlen3_f32(__x, __y, __z);
676 }
679 float rnorm4df(float __x, float __y, float __z, float __w) {
680  return __ocml_rlen4_f32(__x, __y, __z, __w);
681 }
684 float rnormf(int __dim,
685  const float *__a) { // TODO: placeholder until OCML adds support.
686  float __r = 0;
687  while (__dim--) {
688  __r += __a[0] * __a[0];
689  ++__a;
690  }
691 
692  return __ocml_rsqrt_f32(__r);
693 }
696 float roundf(float __x) { return __builtin_roundf(__x); }
699 float rsqrtf(float __x) { return __ocml_rsqrt_f32(__x); }
702 float scalblnf(float __x, long int __n) {
703  return (__n < INT_MAX) ? __builtin_amdgcn_ldexpf(__x, __n)
704  : __ocml_scalb_f32(__x, __n);
705 }
708 float scalbnf(float __x, int __n) { return __builtin_amdgcn_ldexpf(__x, __n); }
711 __RETURN_TYPE __signbitf(float __x) { return __builtin_signbitf(__x); }
714 void sincosf(float __x, float *__sinptr, float *__cosptr) {
715  float __tmp;
716 #ifdef __OPENMP_AMDGCN__
717 #pragma omp allocate(__tmp) allocator(omp_thread_mem_alloc)
718 #endif
719 #ifdef __CLANG_CUDA_APPROX_TRANSCENDENTALS__
720  __sincosf(__x, __sinptr, __cosptr);
721 #else
722  *__sinptr =
723  __ocml_sincos_f32(__x, (__attribute__((address_space(5))) float *)&__tmp);
724  *__cosptr = __tmp;
725 #endif
726 }
729 void sincospif(float __x, float *__sinptr, float *__cosptr) {
730  float __tmp;
731 #ifdef __OPENMP_AMDGCN__
732 #pragma omp allocate(__tmp) allocator(omp_thread_mem_alloc)
733 #endif
734  *__sinptr = __ocml_sincospi_f32(
735  __x, (__attribute__((address_space(5))) float *)&__tmp);
736  *__cosptr = __tmp;
737 }
740 float sinf(float __x) { return __FAST_OR_SLOW(__sinf, __ocml_sin_f32)(__x); }
743 float sinhf(float __x) { return __ocml_sinh_f32(__x); }
746 float sinpif(float __x) { return __ocml_sinpi_f32(__x); }
749 float sqrtf(float __x) { return __builtin_sqrtf(__x); }
752 float tanf(float __x) { return __ocml_tan_f32(__x); }
755 float tanhf(float __x) { return __ocml_tanh_f32(__x); }
758 float tgammaf(float __x) { return __ocml_tgamma_f32(__x); }
761 float truncf(float __x) { return __builtin_truncf(__x); }
764 float y0f(float __x) { return __ocml_y0_f32(__x); }
767 float y1f(float __x) { return __ocml_y1_f32(__x); }
770 float ynf(int __n, float __x) { // TODO: we could use Ahmes multiplication
771  // and the Miller & Brown algorithm
772  // for linear recurrences to get O(log n) steps, but it's unclear if
773  // it'd be beneficial in this case. Placeholder until OCML adds
774  // support.
775  if (__n == 0)
776  return y0f(__x);
777  if (__n == 1)
778  return y1f(__x);
779 
780  float __x0 = y0f(__x);
781  float __x1 = y1f(__x);
782  for (int __i = 1; __i < __n; ++__i) {
783  float __x2 = (2 * __i) / __x * __x1 - __x0;
784  __x0 = __x1;
785  __x1 = __x2;
786  }
787 
788  return __x1;
789 }
790 // END FLOAT
791 
793 
797 
798 // BEGIN DOUBLE
799 
802 double acos(double __x) { return __ocml_acos_f64(__x); }
805 double acosh(double __x) { return __ocml_acosh_f64(__x); }
808 double asin(double __x) { return __ocml_asin_f64(__x); }
811 double asinh(double __x) { return __ocml_asinh_f64(__x); }
814 double atan(double __x) { return __ocml_atan_f64(__x); }
817 double atan2(double __x, double __y) { return __ocml_atan2_f64(__x, __y); }
820 double atanh(double __x) { return __ocml_atanh_f64(__x); }
823 double cbrt(double __x) { return __ocml_cbrt_f64(__x); }
826 double ceil(double __x) { return __builtin_ceil(__x); }
829 double copysign(double __x, double __y) {
830  return __builtin_copysign(__x, __y);
831 }
834 double cos(double __x) { return __ocml_cos_f64(__x); }
837 double cosh(double __x) { return __ocml_cosh_f64(__x); }
840 double cospi(double __x) { return __ocml_cospi_f64(__x); }
843 double cyl_bessel_i0(double __x) { return __ocml_i0_f64(__x); }
846 double cyl_bessel_i1(double __x) { return __ocml_i1_f64(__x); }
849 double erf(double __x) { return __ocml_erf_f64(__x); }
852 double erfc(double __x) { return __ocml_erfc_f64(__x); }
855 double erfcinv(double __x) { return __ocml_erfcinv_f64(__x); }
858 double erfcx(double __x) { return __ocml_erfcx_f64(__x); }
861 double erfinv(double __x) { return __ocml_erfinv_f64(__x); }
864 double exp(double __x) { return __ocml_exp_f64(__x); }
867 double exp10(double __x) { return __ocml_exp10_f64(__x); }
870 double exp2(double __x) { return __ocml_exp2_f64(__x); }
873 double expm1(double __x) { return __ocml_expm1_f64(__x); }
876 double fabs(double __x) { return __builtin_fabs(__x); }
879 double fdim(double __x, double __y) { return __ocml_fdim_f64(__x, __y); }
882 double floor(double __x) { return __builtin_floor(__x); }
885 double fma(double __x, double __y, double __z) {
886  return __builtin_fma(__x, __y, __z);
887 }
890 double fmax(double __x, double __y) { return __builtin_fmax(__x, __y); }
893 double fmin(double __x, double __y) { return __builtin_fmin(__x, __y); }
896 double fmod(double __x, double __y) { return __ocml_fmod_f64(__x, __y); }
899 double frexp(double __x, int *__nptr) {
900  return __builtin_frexp(__x, __nptr);
901 }
904 double hypot(double __x, double __y) { return __ocml_hypot_f64(__x, __y); }
907 int ilogb(double __x) { return __ocml_ilogb_f64(__x); }
910 __RETURN_TYPE __finite(double __x) { return __builtin_isfinite(__x); }
913 __RETURN_TYPE __isinf(double __x) { return __builtin_isinf(__x); }
916 __RETURN_TYPE __isnan(double __x) { return __builtin_isnan(__x); }
919 double j0(double __x) { return __ocml_j0_f64(__x); }
922 double j1(double __x) { return __ocml_j1_f64(__x); }
925 double jn(int __n, double __x) { // TODO: we could use Ahmes multiplication
926  // and the Miller & Brown algorithm
927  // for linear recurrences to get O(log n) steps, but it's unclear if
928  // it'd be beneficial in this case. Placeholder until OCML adds
929  // support.
930  if (__n == 0)
931  return j0(__x);
932  if (__n == 1)
933  return j1(__x);
934 
935  double __x0 = j0(__x);
936  double __x1 = j1(__x);
937  for (int __i = 1; __i < __n; ++__i) {
938  double __x2 = (2 * __i) / __x * __x1 - __x0;
939  __x0 = __x1;
940  __x1 = __x2;
941  }
942  return __x1;
943 }
946 double ldexp(double __x, int __e) { return __builtin_amdgcn_ldexp(__x, __e); }
949 double lgamma(double __x) { return __ocml_lgamma_f64(__x); }
952 long long int llrint(double __x) { return __builtin_rint(__x); }
955 long long int llround(double __x) { return __builtin_round(__x); }
958 double log(double __x) { return __ocml_log_f64(__x); }
961 double log10(double __x) { return __ocml_log10_f64(__x); }
964 double log1p(double __x) { return __ocml_log1p_f64(__x); }
967 double log2(double __x) { return __ocml_log2_f64(__x); }
970 double logb(double __x) { return __ocml_logb_f64(__x); }
973 long int lrint(double __x) { return __builtin_rint(__x); }
976 long int lround(double __x) { return __builtin_round(__x); }
979 double modf(double __x, double *__iptr) {
980  double __tmp;
981 #ifdef __OPENMP_AMDGCN__
982 #pragma omp allocate(__tmp) allocator(omp_thread_mem_alloc)
983 #endif
984  double __r =
985  __ocml_modf_f64(__x, (__attribute__((address_space(5))) double *)&__tmp);
986  *__iptr = __tmp;
987 
988  return __r;
989 }
992 double nan(const char *__tagp) {
993 #if !_WIN32
994  union {
995  double val;
996  struct ieee_double {
997  uint64_t mantissa : 51;
998  uint32_t quiet : 1;
999  uint32_t exponent : 11;
1000  uint32_t sign : 1;
1001  } bits;
1002  } __tmp;
1003  __static_assert_type_size_equal(sizeof(__tmp.val), sizeof(__tmp.bits));
1004 
1005  __tmp.bits.sign = 0u;
1006  __tmp.bits.exponent = ~0u;
1007  __tmp.bits.quiet = 1u;
1008  __tmp.bits.mantissa = __make_mantissa(__tagp);
1009 
1010  return __tmp.val;
1011 #else
1012  __static_assert_type_size_equal(sizeof(uint64_t), sizeof(double));
1013  uint64_t __val = __make_mantissa(__tagp);
1014  __val |= 0xFFF << 51;
1015  return *reinterpret_cast<double *>(&__val);
1016 #endif
1017 }
1019 __DEVICE__
1020 double nearbyint(double __x) { return __builtin_nearbyint(__x); }
1022 __DEVICE__
1023 double nextafter(double __x, double __y) {
1024  return __ocml_nextafter_f64(__x, __y);
1025 }
1027 __DEVICE__
1028 double norm(int __dim,
1029  const double *__a) { // TODO: placeholder until OCML adds support.
1030  double __r = 0;
1031  while (__dim--) {
1032  __r += __a[0] * __a[0];
1033  ++__a;
1034  }
1035 
1036  return __builtin_sqrt(__r);
1037 }
1039 __DEVICE__
1040 double norm3d(double __x, double __y, double __z) {
1041  return __ocml_len3_f64(__x, __y, __z);
1042 }
1044 __DEVICE__
1045 double norm4d(double __x, double __y, double __z, double __w) {
1046  return __ocml_len4_f64(__x, __y, __z, __w);
1047 }
1049 __DEVICE__
1050 double normcdf(double __x) { return __ocml_ncdf_f64(__x); }
1052 __DEVICE__
1053 double normcdfinv(double __x) { return __ocml_ncdfinv_f64(__x); }
1055 __DEVICE__
1056 double pow(double __x, double __y) { return __ocml_pow_f64(__x, __y); }
1058 __DEVICE__
1059 double powi(double __x, int __y) { return __ocml_pown_f64(__x, __y); }
1061 __DEVICE__
1062 double rcbrt(double __x) { return __ocml_rcbrt_f64(__x); }
1064 __DEVICE__
1065 double remainder(double __x, double __y) {
1066  return __ocml_remainder_f64(__x, __y);
1067 }
1069 __DEVICE__
1070 double remquo(double __x, double __y, int *__quo) {
1071  int __tmp;
1072 #ifdef __OPENMP_AMDGCN__
1073 #pragma omp allocate(__tmp) allocator(omp_thread_mem_alloc)
1074 #endif
1075  double __r = __ocml_remquo_f64(
1076  __x, __y, (__attribute__((address_space(5))) int *)&__tmp);
1077  *__quo = __tmp;
1078 
1079  return __r;
1080 }
1082 __DEVICE__
1083 double rhypot(double __x, double __y) { return __ocml_rhypot_f64(__x, __y); }
1085 __DEVICE__
1086 double rint(double __x) { return __builtin_rint(__x); }
1088 __DEVICE__
1089 double rnorm(int __dim,
1090  const double *__a) { // TODO: placeholder until OCML adds support.
1091  double __r = 0;
1092  while (__dim--) {
1093  __r += __a[0] * __a[0];
1094  ++__a;
1095  }
1096 
1097  return __ocml_rsqrt_f64(__r);
1098 }
1100 __DEVICE__
1101 double rnorm3d(double __x, double __y, double __z) {
1102  return __ocml_rlen3_f64(__x, __y, __z);
1103 }
1105 __DEVICE__
1106 double rnorm4d(double __x, double __y, double __z, double __w) {
1107  return __ocml_rlen4_f64(__x, __y, __z, __w);
1108 }
1110 __DEVICE__
1111 double round(double __x) { return __builtin_round(__x); }
1113 __DEVICE__
1114 double rsqrt(double __x) { return __ocml_rsqrt_f64(__x); }
1116 __DEVICE__
1117 double scalbln(double __x, long int __n) {
1118  return (__n < INT_MAX) ? __builtin_amdgcn_ldexp(__x, __n)
1119  : __ocml_scalb_f64(__x, __n);
1120 }
1122 __DEVICE__
1123 double scalbn(double __x, int __n) { return __builtin_amdgcn_ldexp(__x, __n); }
1125 __DEVICE__
1126 __RETURN_TYPE __signbit(double __x) { return __builtin_signbit(__x); }
1128 __DEVICE__
1129 double sin(double __x) { return __ocml_sin_f64(__x); }
1131 __DEVICE__
1132 void sincos(double __x, double *__sinptr, double *__cosptr) {
1133  double __tmp;
1134 #ifdef __OPENMP_AMDGCN__
1135 #pragma omp allocate(__tmp) allocator(omp_thread_mem_alloc)
1136 #endif
1137  *__sinptr = __ocml_sincos_f64(
1138  __x, (__attribute__((address_space(5))) double *)&__tmp);
1139  *__cosptr = __tmp;
1140 }
1142 __DEVICE__
1143 void sincospi(double __x, double *__sinptr, double *__cosptr) {
1144  double __tmp;
1145 #ifdef __OPENMP_AMDGCN__
1146 #pragma omp allocate(__tmp) allocator(omp_thread_mem_alloc)
1147 #endif
1148  *__sinptr = __ocml_sincospi_f64(
1149  __x, (__attribute__((address_space(5))) double *)&__tmp);
1150  *__cosptr = __tmp;
1151 }
1153 __DEVICE__
1154 double sinh(double __x) { return __ocml_sinh_f64(__x); }
1156 __DEVICE__
1157 double sinpi(double __x) { return __ocml_sinpi_f64(__x); }
1159 __DEVICE__
1160 double sqrt(double __x) { return __builtin_sqrt(__x); }
1162 __DEVICE__
1163 double tan(double __x) { return __ocml_tan_f64(__x); }
1165 __DEVICE__
1166 double tanh(double __x) { return __ocml_tanh_f64(__x); }
1168 __DEVICE__
1169 double tgamma(double __x) { return __ocml_tgamma_f64(__x); }
1171 __DEVICE__
1172 double trunc(double __x) { return __builtin_trunc(__x); }
1174 __DEVICE__
1175 double y0(double __x) { return __ocml_y0_f64(__x); }
1177 __DEVICE__
1178 double y1(double __x) { return __ocml_y1_f64(__x); }
1180 __DEVICE__
1181 double yn(int __n, double __x) { // TODO: we could use Ahmes multiplication
1182  // and the Miller & Brown algorithm
1183  // for linear recurrences to get O(log n) steps, but it's unclear if
1184  // it'd be beneficial in this case. Placeholder until OCML adds
1185  // support.
1186  if (__n == 0)
1187  return y0(__x);
1188  if (__n == 1)
1189  return y1(__x);
1190 
1191  double __x0 = y0(__x);
1192  double __x1 = y1(__x);
1193  for (int __i = 1; __i < __n; ++__i) {
1194  double __x2 = (2 * __i) / __x * __x1 - __x0;
1195  __x0 = __x1;
1196  __x1 = __x2;
1197  }
1198 
1199  return __x1;
1200 }
1202 
1206 
1207 // BEGIN INTRINSICS
1208 
1209 #if defined OCML_BASIC_ROUNDED_OPERATIONS
1211 __DEVICE__
1212 double __dadd_rd(double __x, double __y) {
1213  return __ocml_add_rtn_f64(__x, __y);
1214 }
1216 __DEVICE__
1217 double __dadd_rn(double __x, double __y) {
1218  return __ocml_add_rte_f64(__x, __y);
1219 }
1221 __DEVICE__
1222 double __dadd_ru(double __x, double __y) {
1223  return __ocml_add_rtp_f64(__x, __y);
1224 }
1226 __DEVICE__
1227 double __dadd_rz(double __x, double __y) {
1228  return __ocml_add_rtz_f64(__x, __y);
1229 }
1230 #else
1232 __DEVICE__
1233 double __dadd_rn(double __x, double __y) { return __x + __y; }
1234 #endif
1235 
1236 #if defined OCML_BASIC_ROUNDED_OPERATIONS
1238 __DEVICE__
1239 double __ddiv_rd(double __x, double __y) {
1240  return __ocml_div_rtn_f64(__x, __y);
1241 }
1243 __DEVICE__
1244 double __ddiv_rn(double __x, double __y) {
1245  return __ocml_div_rte_f64(__x, __y);
1246 }
1248 __DEVICE__
1249 double __ddiv_ru(double __x, double __y) {
1250  return __ocml_div_rtp_f64(__x, __y);
1251 }
1253 __DEVICE__
1254 double __ddiv_rz(double __x, double __y) {
1255  return __ocml_div_rtz_f64(__x, __y);
1256 }
1257 #else
1259 __DEVICE__
1260 double __ddiv_rn(double __x, double __y) { return __x / __y; }
1261 #endif
1262 
1263 #if defined OCML_BASIC_ROUNDED_OPERATIONS
1265 __DEVICE__
1266 double __dmul_rd(double __x, double __y) {
1267  return __ocml_mul_rtn_f64(__x, __y);
1268 }
1270 __DEVICE__
1271 double __dmul_rn(double __x, double __y) {
1272  return __ocml_mul_rte_f64(__x, __y);
1273 }
1275 __DEVICE__
1276 double __dmul_ru(double __x, double __y) {
1277  return __ocml_mul_rtp_f64(__x, __y);
1278 }
1280 __DEVICE__
1281 double __dmul_rz(double __x, double __y) {
1282  return __ocml_mul_rtz_f64(__x, __y);
1283 }
1284 #else
1286 __DEVICE__
1287 double __dmul_rn(double __x, double __y) { return __x * __y; }
1288 #endif
1289 
1290 #if defined OCML_BASIC_ROUNDED_OPERATIONS
1292 __DEVICE__
1293 double __drcp_rd(double __x) { return __ocml_div_rtn_f64(1.0, __x); }
1295 __DEVICE__
1296 double __drcp_rn(double __x) { return __ocml_div_rte_f64(1.0, __x); }
1298 __DEVICE__
1299 double __drcp_ru(double __x) { return __ocml_div_rtp_f64(1.0, __x); }
1301 __DEVICE__
1302 double __drcp_rz(double __x) { return __ocml_div_rtz_f64(1.0, __x); }
1303 #else
1305 __DEVICE__
1306 double __drcp_rn(double __x) { return 1.0 / __x; }
1307 #endif
1308 
1309 #if defined OCML_BASIC_ROUNDED_OPERATIONS
1311 __DEVICE__
1312 double __dsqrt_rd(double __x) { return __ocml_sqrt_rtn_f64(__x); }
1314 __DEVICE__
1315 double __dsqrt_rn(double __x) { return __ocml_sqrt_rte_f64(__x); }
1317 __DEVICE__
1318 double __dsqrt_ru(double __x) { return __ocml_sqrt_rtp_f64(__x); }
1320 __DEVICE__
1321 double __dsqrt_rz(double __x) { return __ocml_sqrt_rtz_f64(__x); }
1322 #else
1324 __DEVICE__
1325 double __dsqrt_rn(double __x) { return __builtin_sqrt(__x); }
1326 #endif
1327 
1328 #if defined OCML_BASIC_ROUNDED_OPERATIONS
1330 __DEVICE__
1331 double __dsub_rd(double __x, double __y) {
1332  return __ocml_sub_rtn_f64(__x, __y);
1333 }
1335 __DEVICE__
1336 double __dsub_rn(double __x, double __y) {
1337  return __ocml_sub_rte_f64(__x, __y);
1338 }
1340 __DEVICE__
1341 double __dsub_ru(double __x, double __y) {
1342  return __ocml_sub_rtp_f64(__x, __y);
1343 }
1345 __DEVICE__
1346 double __dsub_rz(double __x, double __y) {
1347  return __ocml_sub_rtz_f64(__x, __y);
1348 }
1349 #else
1351 __DEVICE__
1352 double __dsub_rn(double __x, double __y) { return __x - __y; }
1353 #endif
1354 
1355 #if defined OCML_BASIC_ROUNDED_OPERATIONS
1357 __DEVICE__
1358 double __fma_rd(double __x, double __y, double __z) {
1359  return __ocml_fma_rtn_f64(__x, __y, __z);
1360 }
1362 __DEVICE__
1363 double __fma_rn(double __x, double __y, double __z) {
1364  return __ocml_fma_rte_f64(__x, __y, __z);
1365 }
1367 __DEVICE__
1368 double __fma_ru(double __x, double __y, double __z) {
1369  return __ocml_fma_rtp_f64(__x, __y, __z);
1370 }
1372 __DEVICE__
1373 double __fma_rz(double __x, double __y, double __z) {
1374  return __ocml_fma_rtz_f64(__x, __y, __z);
1375 }
1376 #else
1378 __DEVICE__
1379 double __fma_rn(double __x, double __y, double __z) {
1380  return __builtin_fma(__x, __y, __z);
1381 }
1382 #endif
1383 // END INTRINSICS
1384 
1385 // END DOUBLE
1386 
1388 
1389 // C only macros
1390 #if !defined(__cplusplus) && __STDC_VERSION__ >= 201112L
1391 #define isfinite(__x) _Generic((__x), float : __finitef, double : __finite)(__x)
1392 #define isinf(__x) _Generic((__x), float : __isinff, double : __isinf)(__x)
1393 #define isnan(__x) _Generic((__x), float : __isnanf, double : __isnan)(__x)
1394 #define signbit(__x) \
1395  _Generic((__x), float : __signbitf, double : __signbit)(__x)
1396 #endif // !defined(__cplusplus) && __STDC_VERSION__ >= 201112L
1397 
1398 #if defined(__cplusplus)
1401 
1403 template <class T> __DEVICE__ T min(T __arg1, T __arg2) {
1404  return (__arg1 < __arg2) ? __arg1 : __arg2;
1405 }
1407 template <class T> __DEVICE__ T max(T __arg1, T __arg2) {
1408  return (__arg1 > __arg2) ? __arg1 : __arg2;
1409 }
1411 
1414 
1416 __DEVICE__ int min(int __arg1, int __arg2) {
1417  return (__arg1 < __arg2) ? __arg1 : __arg2;
1418 }
1420 __DEVICE__ int max(int __arg1, int __arg2) {
1421  return (__arg1 > __arg2) ? __arg1 : __arg2;
1422 }
1424 
1427 __DEVICE__
1428 float max(float __x, float __y) { return __builtin_fmaxf(__x, __y); }
1431 __DEVICE__
1432 double max(double __x, double __y) { return __builtin_fmax(__x, __y); }
1435 __DEVICE__
1436 float min(float __x, float __y) { return __builtin_fminf(__x, __y); }
1439 __DEVICE__
1440 double min(double __x, double __y) { return __builtin_fmin(__x, __y); }
1441 
1442 #if !defined(__HIPCC_RTC__) && !defined(__OPENMP_AMDGCN__)
1445 
1447 __host__ inline static int min(int __arg1, int __arg2) {
1448  return __arg1 < __arg2 ? __arg1 : __arg2;
1449 }
1451 __host__ inline static int max(int __arg1, int __arg2) {
1452  return __arg1 > __arg2 ? __arg1 : __arg2;
1453 }
1455 #endif // !defined(__HIPCC_RTC__) && !defined(__OPENMP_AMDGCN__)
1456 #endif
1457 
1458 // doxygen end Math API
1460 // doxygen end Device APIs
1462 
1463 #pragma pop_macro("__DEVICE__")
1464 #pragma pop_macro("__RETURN_TYPE")
1465 #pragma pop_macro("__FAST_OR_SLOW")
1466 
1467 #endif // __CLANG_HIP_MATH_H__
#define __DEVICE__
Definition: __clang_hip_math.h:29
#define __FAST_OR_SLOW(fast, slow)
Definition: __clang_hip_math.h:40
#define __RETURN_TYPE
Definition: __clang_hip_math.h:51
#define __static_assert_type_size_equal(A, B)
Definition: __clang_hip_math.h:75
__DEVICE__ double log2(double __x)
Returns the base 2 logarithm of x.
Definition: __clang_hip_math.h:967
__DEVICE__ double ceil(double __x)
Returns ceiling of x.
Definition: __clang_hip_math.h:826
__DEVICE__ double atan2(double __x, double __y)
Returns the arc tangent of the ratio of x and y.
Definition: __clang_hip_math.h:817
__DEVICE__ double rhypot(double __x, double __y)
Returns one over the square root of the sum of squares of x and y.
Definition: __clang_hip_math.h:1083
__DEVICE__ double normcdfinv(double __x)
Returns the inverse of the standard normal cumulative distribution function.
Definition: __clang_hip_math.h:1053
__DEVICE__ double norm3d(double __x, double __y, double __z)
Returns the square root of the sum of squares of x, y and z.
Definition: __clang_hip_math.h:1040
__DEVICE__ double log(double __x)
Returns the natural logarithm of x.
Definition: __clang_hip_math.h:958
__DEVICE__ double cbrt(double __x)
Returns the cube root of x.
Definition: __clang_hip_math.h:823
__DEVICE__ double ldexp(double __x, int __e)
Returns the value of for x and e.
Definition: __clang_hip_math.h:946
__DEVICE__ double fmax(double __x, double __y)
Determine the maximum numeric value of x and y.
Definition: __clang_hip_math.h:890
__DEVICE__ double cosh(double __x)
Returns the hyperbolic cosine of x.
Definition: __clang_hip_math.h:837
__DEVICE__ double tgamma(double __x)
Returns the gamma function of x.
Definition: __clang_hip_math.h:1169
__DEVICE__ double sinh(double __x)
Returns the hyperbolic sine of x.
Definition: __clang_hip_math.h:1154
__DEVICE__ double erfinv(double __x)
Returns the inverse error function of x.
Definition: __clang_hip_math.h:861
__DEVICE__ double fdim(double __x, double __y)
Returns the positive difference between x and y.
Definition: __clang_hip_math.h:879
__DEVICE__ long int lrint(double __x)
Round x to nearest integer value.
Definition: __clang_hip_math.h:973
__DEVICE__ double j0(double __x)
Returns the value of the Bessel function of the first kind of order 0 for x.
Definition: __clang_hip_math.h:919
__DEVICE__ double exp(double __x)
Returns .
Definition: __clang_hip_math.h:864
__DEVICE__ double j1(double __x)
Returns the value of the Bessel function of the first kind of order 1 for x.
Definition: __clang_hip_math.h:922
__DEVICE__ __RETURN_TYPE __isnan(double __x)
Determine whether x is a NaN.
Definition: __clang_hip_math.h:916
__DEVICE__ double cos(double __x)
Returns the cosine of x.
Definition: __clang_hip_math.h:834
__DEVICE__ double norm(int __dim, const double *__a)
Returns the square root of the sum of squares of any number of coordinates.
Definition: __clang_hip_math.h:1028
__DEVICE__ double sin(double __x)
Returns the sine of x.
Definition: __clang_hip_math.h:1129
__DEVICE__ double tan(double __x)
Returns the tangent of x.
Definition: __clang_hip_math.h:1163
__DEVICE__ double hypot(double __x, double __y)
Returns the square root of the sum of squares of x and y.
Definition: __clang_hip_math.h:904
__DEVICE__ double fmin(double __x, double __y)
Determine the minimum numeric value of x and y.
Definition: __clang_hip_math.h:893
__DEVICE__ double jn(int __n, double __x)
Returns the value of the Bessel function of the first kind of order n for x.
Definition: __clang_hip_math.h:925
__DEVICE__ long int lround(double __x)
Round to nearest integer value.
Definition: __clang_hip_math.h:976
__DEVICE__ double tanh(double __x)
Returns the hyperbolic tangent of x.
Definition: __clang_hip_math.h:1166
__DEVICE__ double copysign(double __x, double __y)
Create value with given magnitude, copying sign of second value.
Definition: __clang_hip_math.h:829
__DEVICE__ double frexp(double __x, int *__nptr)
Extract mantissa and exponent of x.
Definition: __clang_hip_math.h:899
__DEVICE__ double acosh(double __x)
Returns the nonnegative arc hyperbolic cosine of x.
Definition: __clang_hip_math.h:805
__DEVICE__ double scalbln(double __x, long int __n)
Scale x by .
Definition: __clang_hip_math.h:1117
__DEVICE__ double rint(double __x)
Round x to nearest integer value in floating-point.
Definition: __clang_hip_math.h:1086
__DEVICE__ double logb(double __x)
Returns the floating point representation of the exponent of x.
Definition: __clang_hip_math.h:970
__DEVICE__ double atan(double __x)
Returns the arc tangent of x.
Definition: __clang_hip_math.h:814
__DEVICE__ double normcdf(double __x)
Returns the standard normal cumulative distribution function.
Definition: __clang_hip_math.h:1050
__DEVICE__ double fma(double __x, double __y, double __z)
Returns as a single operation.
Definition: __clang_hip_math.h:885
__DEVICE__ double erfc(double __x)
Returns the complementary error function of x.
Definition: __clang_hip_math.h:852
__DEVICE__ double y1(double __x)
Returns the value of the Bessel function of the second kind of order 1 for x.
Definition: __clang_hip_math.h:1178
__DEVICE__ double asin(double __x)
Returns the arc sine of x.
Definition: __clang_hip_math.h:808
__DEVICE__ double erfcinv(double __x)
Returns the inverse complementary function of x.
Definition: __clang_hip_math.h:855
__DEVICE__ double powi(double __x, int __y)
Returns the value of first argument to the power of second argument.
Definition: __clang_hip_math.h:1059
__DEVICE__ double nextafter(double __x, double __y)
Returns next representable single-precision floating-point value after x.
Definition: __clang_hip_math.h:1023
__DEVICE__ double cospi(double __x)
Returns the cosine of .
Definition: __clang_hip_math.h:840
__DEVICE__ double rsqrt(double __x)
Returns the reciprocal of the square root of x.
Definition: __clang_hip_math.h:1114
__DEVICE__ double pow(double __x, double __y)
Returns .
Definition: __clang_hip_math.h:1056
__DEVICE__ double norm4d(double __x, double __y, double __z, double __w)
Returns the square root of the sum of squares of x, y, z and w.
Definition: __clang_hip_math.h:1045
__DEVICE__ double remquo(double __x, double __y, int *__quo)
Returns double-precision floating-point remainder and part of quotient.
Definition: __clang_hip_math.h:1070
__DEVICE__ double nan(const char *__tagp)
Returns "Not a Number" value.
Definition: __clang_hip_math.h:992
__DEVICE__ double rnorm(int __dim, const double *__a)
Returns the reciprocal of square root of the sum of squares of any number of coordinates.
Definition: __clang_hip_math.h:1089
__DEVICE__ double sinpi(double __x)
Returns the hyperbolic sine of .
Definition: __clang_hip_math.h:1157
__DEVICE__ double fmod(double __x, double __y)
Returns the floating-point remainder of x / y.
Definition: __clang_hip_math.h:896
__DEVICE__ double y0(double __x)
Returns the value of the Bessel function of the second kind of order 0 for x.
Definition: __clang_hip_math.h:1175
__DEVICE__ double sqrt(double __x)
Returns the square root of x.
Definition: __clang_hip_math.h:1160
__DEVICE__ double acos(double __x)
Returns the arc cosine of x.
Definition: __clang_hip_math.h:802
__DEVICE__ __RETURN_TYPE __finite(double __x)
Determine whether x is finite.
Definition: __clang_hip_math.h:910
__DEVICE__ double lgamma(double __x)
Returns the natural logarithm of the absolute value of the gamma function of x.
Definition: __clang_hip_math.h:949
__DEVICE__ double yn(int __n, double __x)
Returns the value of the Bessel function of the second kind of order n for x.
Definition: __clang_hip_math.h:1181
__DEVICE__ double log10(double __x)
Returns the base 10 logarithm of x.
Definition: __clang_hip_math.h:961
__DEVICE__ double cyl_bessel_i0(double __x)
Returns the value of the regular modified cylindrical Bessel function of order 0 for x.
Definition: __clang_hip_math.h:843
__DEVICE__ double scalbn(double __x, int __n)
Scale x by .
Definition: __clang_hip_math.h:1123
__DEVICE__ double cyl_bessel_i1(double __x)
Returns the value of the regular modified cylindrical Bessel function of order 1 for x.
Definition: __clang_hip_math.h:846
__DEVICE__ double rcbrt(double __x)
Returns the reciprocal cube root function.
Definition: __clang_hip_math.h:1062
__DEVICE__ double rnorm3d(double __x, double __y, double __z)
Returns one over the square root of the sum of squares of x, y and z.
Definition: __clang_hip_math.h:1101
__DEVICE__ double nearbyint(double __x)
Round x to the nearest integer.
Definition: __clang_hip_math.h:1020
__DEVICE__ long long int llround(double __x)
Round to nearest integer value.
Definition: __clang_hip_math.h:955
__DEVICE__ void sincos(double __x, double *__sinptr, double *__cosptr)
Returns the sine and cosine of x.
Definition: __clang_hip_math.h:1132
__DEVICE__ double round(double __x)
Round to nearest integer value in floating-point.
Definition: __clang_hip_math.h:1111
__DEVICE__ __RETURN_TYPE __signbit(double __x)
Return the sign bit of x.
Definition: __clang_hip_math.h:1126
__DEVICE__ long long int llrint(double __x)
Round x to nearest integer value.
Definition: __clang_hip_math.h:952
__DEVICE__ double remainder(double __x, double __y)
Returns double-precision floating-point remainder.
Definition: __clang_hip_math.h:1065
__DEVICE__ double fabs(double __x)
Returns the absolute value of x.
Definition: __clang_hip_math.h:876
__DEVICE__ double modf(double __x, double *__iptr)
Break down x into fractional and integral parts.
Definition: __clang_hip_math.h:979
__DEVICE__ double rnorm4d(double __x, double __y, double __z, double __w)
Returns one over the square root of the sum of squares of x, y, z and w.
Definition: __clang_hip_math.h:1106
__DEVICE__ int ilogb(double __x)
Returns the unbiased integer exponent of x.
Definition: __clang_hip_math.h:907
__DEVICE__ double floor(double __x)
Returns the largest integer less than or equal to x.
Definition: __clang_hip_math.h:882
__DEVICE__ double erfcx(double __x)
Returns the scaled complementary error function of x.
Definition: __clang_hip_math.h:858
__DEVICE__ double atanh(double __x)
Returns the arc hyperbolic tangent of x.
Definition: __clang_hip_math.h:820
__DEVICE__ double erf(double __x)
Returns the error function of x.
Definition: __clang_hip_math.h:849
__DEVICE__ double exp10(double __x)
Returns .
Definition: __clang_hip_math.h:867
__DEVICE__ void sincospi(double __x, double *__sinptr, double *__cosptr)
Returns the sine and cosine of .
Definition: __clang_hip_math.h:1143
__DEVICE__ __RETURN_TYPE __isinf(double __x)
Determine whether x is infinite.
Definition: __clang_hip_math.h:913
__DEVICE__ double log1p(double __x)
Returns the natural logarithm of x + 1.
Definition: __clang_hip_math.h:964
__DEVICE__ double expm1(double __x)
Returns for x.
Definition: __clang_hip_math.h:873
__DEVICE__ double exp2(double __x)
Returns .
Definition: __clang_hip_math.h:870
__DEVICE__ double trunc(double __x)
Truncate x to the integral part.
Definition: __clang_hip_math.h:1172
__DEVICE__ double asinh(double __x)
Returns the arc hyperbolic sine of x.
Definition: __clang_hip_math.h:811
__DEVICE__ double __dsub_rn(double __x, double __y)
Subtract two floating-point values in round-to-nearest-even mode.
Definition: __clang_hip_math.h:1352
__DEVICE__ double __dsqrt_rn(double __x)
Returns in round-to-nearest-even mode.
Definition: __clang_hip_math.h:1325
__DEVICE__ double __dadd_rn(double __x, double __y)
Add two floating-point values in round-to-nearest-even mode.
Definition: __clang_hip_math.h:1233
__DEVICE__ double __fma_rn(double __x, double __y, double __z)
Returns as a single operation in round-to-nearest-even mode.
Definition: __clang_hip_math.h:1379
__DEVICE__ double __ddiv_rn(double __x, double __y)
Divide two floating-point values in round-to-nearest-even mode.
Definition: __clang_hip_math.h:1260
__DEVICE__ double __dmul_rn(double __x, double __y)
Multiply two floating-point values in round-to-nearest-even mode.
Definition: __clang_hip_math.h:1287
__DEVICE__ double __drcp_rn(double __x)
Returns 1 / x in round-to-nearest-even mode.
Definition: __clang_hip_math.h:1306
__DEVICE__ __RETURN_TYPE __isinff(float __x)
Determine whether x is infinite.
Definition: __clang_hip_math.h:506
__DEVICE__ float sinpif(float __x)
Returns the hyperbolic sine of .
Definition: __clang_hip_math.h:746
__DEVICE__ float tanf(float __x)
Returns the tangent of x.
Definition: __clang_hip_math.h:752
__DEVICE__ float log2f(float __x)
Returns the base 2 logarithm of x.
Definition: __clang_hip_math.h:557
__DEVICE__ float y0f(float __x)
Returns the value of the Bessel function of the second kind of order 0 for x.
Definition: __clang_hip_math.h:764
__DEVICE__ float tanhf(float __x)
Returns the hyperbolic tangent of x.
Definition: __clang_hip_math.h:755
__DEVICE__ float coshf(float __x)
Returns the hyperbolic cosine of x.
Definition: __clang_hip_math.h:427
__DEVICE__ float log10f(float __x)
Returns the base 10 logarithm of x.
Definition: __clang_hip_math.h:551
__DEVICE__ float j1f(float __x)
Returns the value of the Bessel function of the first kind of order 1 for x.
Definition: __clang_hip_math.h:515
__DEVICE__ __RETURN_TYPE __finitef(float __x)
Determine whether x is finite.
Definition: __clang_hip_math.h:503
__DEVICE__ float ldexpf(float __x, int __e)
Returns the value of for x and e.
Definition: __clang_hip_math.h:539
__DEVICE__ long long int llroundf(float __x)
Round to nearest integer value.
Definition: __clang_hip_math.h:548
__DEVICE__ float truncf(float __x)
Truncate x to the integral part.
Definition: __clang_hip_math.h:761
__DEVICE__ float remainderf(float __x, float __y)
Returns single-precision floating-point remainder.
Definition: __clang_hip_math.h:650
__DEVICE__ float fabsf(float __x)
Returns the absolute value of x
Definition: __clang_hip_math.h:466
__DEVICE__ float scalbnf(float __x, int __n)
Scale x by .
Definition: __clang_hip_math.h:708
__DEVICE__ float cyl_bessel_i0f(float __x)
Returns the value of the regular modified cylindrical Bessel function of order 0 for x.
Definition: __clang_hip_math.h:433
__DEVICE__ float nanf(const char *__tagp __attribute__((nonnull)))
Returns "Not a Number" value.
Definition: __clang_hip_math.h:584
__DEVICE__ float lgammaf(float __x)
Returns the natural logarithm of the absolute value of the gamma function of x.
Definition: __clang_hip_math.h:542
__DEVICE__ float cospif(float __x)
Returns the cosine of .
Definition: __clang_hip_math.h:430
__DEVICE__ __RETURN_TYPE __signbitf(float __x)
Return the sign bit of x.
Definition: __clang_hip_math.h:711
__DEVICE__ float frexpf(float __x, int *__nptr)
Extract mantissa and exponent of x.
Definition: __clang_hip_math.h:492
__DEVICE__ float tgammaf(float __x)
Returns the gamma function of x.
Definition: __clang_hip_math.h:758
__DEVICE__ float erfinvf(float __x)
Returns the inverse error function of x.
Definition: __clang_hip_math.h:451
__DEVICE__ float modff(float __x, float *__iptr)
Break down x into fractional and integral parts.
Definition: __clang_hip_math.h:572
__DEVICE__ float expm1f(float __x)
Returns .
Definition: __clang_hip_math.h:463
__DEVICE__ float sinhf(float __x)
Returns the hyperbolic sine of x.
Definition: __clang_hip_math.h:743
__DEVICE__ float y1f(float __x)
Returns the value of the Bessel function of the second kind of order 1 for x.
Definition: __clang_hip_math.h:767
__DEVICE__ float acosf(float __x)
Returns the arc cosine of x.
Definition: __clang_hip_math.h:394
__DEVICE__ float fmaf(float __x, float __y, float __z)
Returns as a single operation.
Definition: __clang_hip_math.h:478
__DEVICE__ float cyl_bessel_i1f(float __x)
Returns the value of the regular modified cylindrical Bessel function of order 1 for x.
Definition: __clang_hip_math.h:436
__DEVICE__ float fmodf(float __x, float __y)
Returns the floating-point remainder of x / y.
Definition: __clang_hip_math.h:489
__DEVICE__ float log1pf(float __x)
Returns the natural logarithm of x + 1.
Definition: __clang_hip_math.h:554
__DEVICE__ float atan2f(float __x, float __y)
Returns the arc tangent of the ratio of x and y.
Definition: __clang_hip_math.h:406
__DEVICE__ float copysignf(float __x, float __y)
Create value with given magnitude, copying sign of second value.
Definition: __clang_hip_math.h:421
__DEVICE__ float rnormf(int __dim, const float *__a)
Returns the reciprocal of square root of the sum of squares of any number of coordinates.
Definition: __clang_hip_math.h:684
__DEVICE__ float rnorm4df(float __x, float __y, float __z, float __w)
Returns one over the square root of the sum of squares of x, y, z and w.
Definition: __clang_hip_math.h:679
__DEVICE__ float erff(float __x)
Returns the error function of x.
Definition: __clang_hip_math.h:448
__DEVICE__ float atanf(float __x)
Returns the arc tangent of x.
Definition: __clang_hip_math.h:409
__DEVICE__ float rnorm3df(float __x, float __y, float __z)
Returns one over the square root of the sum of squares of x, y and z.
Definition: __clang_hip_math.h:674
__DEVICE__ float erfcxf(float __x)
Returns the scaled complementary error function of x.
Definition: __clang_hip_math.h:445
__DEVICE__ float erfcinvf(float __x)
Returns the inverse complementary function of x.
Definition: __clang_hip_math.h:442
__DEVICE__ float asinf(float __x)
Returns the arc sine of x.
Definition: __clang_hip_math.h:400
__DEVICE__ long int lroundf(float __x)
Round to nearest integer value.
Definition: __clang_hip_math.h:569
__DEVICE__ float norm4df(float __x, float __y, float __z, float __w)
Returns the square root of the sum of squares of x, y, z and w.
Definition: __clang_hip_math.h:618
__DEVICE__ __RETURN_TYPE __isnanf(float __x)
Determine whether x is a NaN.
Definition: __clang_hip_math.h:509
__DEVICE__ float ynf(int __n, float __x)
Returns the value of the Bessel function of the second kind of order n for x.
Definition: __clang_hip_math.h:770
__DEVICE__ float powf(float __x, float __y)
Returns .
Definition: __clang_hip_math.h:641
__DEVICE__ float sinf(float __x)
Returns the sine of x.
Definition: __clang_hip_math.h:740
__DEVICE__ float remquof(float __x, float __y, int *__quo)
Returns single-precision floating-point remainder and part of quotient.
Definition: __clang_hip_math.h:655
__DEVICE__ float hypotf(float __x, float __y)
Returns the square root of the sum of squares of x and y.
Definition: __clang_hip_math.h:497
__DEVICE__ void sincosf(float __x, float *__sinptr, float *__cosptr)
Returns the sine and cosine of x.
Definition: __clang_hip_math.h:714
__DEVICE__ float exp10f(float __x)
Returns .
Definition: __clang_hip_math.h:454
__DEVICE__ float fmaxf(float __x, float __y)
Determine the maximum numeric value of x and y.
Definition: __clang_hip_math.h:483
__DEVICE__ float fminf(float __x, float __y)
Determine the minimum numeric value of x and y.
Definition: __clang_hip_math.h:486
__DEVICE__ float logf(float __x)
Returns the natural logarithm of x.
Definition: __clang_hip_math.h:563
__DEVICE__ float erfcf(float __x)
Returns the complementary error function of x.
Definition: __clang_hip_math.h:439
__DEVICE__ float atanhf(float __x)
Returns the arc hyperbolic tangent of x.
Definition: __clang_hip_math.h:412
__DEVICE__ float asinhf(float __x)
Returns the arc hyperbolic sine of x.
Definition: __clang_hip_math.h:403
__DEVICE__ float j0f(float __x)
Returns the value of the Bessel function of the first kind of order 0 for x.
Definition: __clang_hip_math.h:512
__DEVICE__ float rsqrtf(float __x)
Returns the reciprocal of the square root of x.
Definition: __clang_hip_math.h:699
__DEVICE__ float jnf(int __n, float __x)
Returns the value of the Bessel function of the first kind of order n for x.
Definition: __clang_hip_math.h:518
__DEVICE__ float logbf(float __x)
Returns the floating point representation of the exponent of x.
Definition: __clang_hip_math.h:560
__DEVICE__ float rhypotf(float __x, float __y)
Returns one over the square root of the sum of squares of x and y.
Definition: __clang_hip_math.h:668
__DEVICE__ float exp2f(float __x)
Returns .
Definition: __clang_hip_math.h:457
__DEVICE__ float powif(float __x, int __y)
Returns the value of first argument to the power of second argument.
Definition: __clang_hip_math.h:644
__DEVICE__ float ceilf(float __x)
Returns ceiling of x.
Definition: __clang_hip_math.h:418
__DEVICE__ float normcdfinvf(float __x)
Returns the inverse of the standard normal cumulative distribution function.
Definition: __clang_hip_math.h:626
__DEVICE__ float norm3df(float __x, float __y, float __z)
Returns the square root of the sum of squares of x, y and z.
Definition: __clang_hip_math.h:613
__DEVICE__ float fdimf(float __x, float __y)
Returns the positive difference between x and y.
Definition: __clang_hip_math.h:469
__DEVICE__ float normf(int __dim, const float *__a)
Returns the square root of the sum of squares of any number of coordinates.
Definition: __clang_hip_math.h:629
__DEVICE__ float nearbyintf(float __x)
Round x to the nearest integer.
Definition: __clang_hip_math.h:605
__DEVICE__ int ilogbf(float __x)
Returns the unbiased integer exponent of x.
Definition: __clang_hip_math.h:500
__DEVICE__ float floorf(float __x)
Returns the largest integer less than or equal to x.
Definition: __clang_hip_math.h:475
__DEVICE__ float sqrtf(float __x)
Returns the square root of x.
Definition: __clang_hip_math.h:749
__DEVICE__ float roundf(float __x)
Round to nearest integer value in floating-point.
Definition: __clang_hip_math.h:696
__DEVICE__ void sincospif(float __x, float *__sinptr, float *__cosptr)
Returns the sine and cosine of .
Definition: __clang_hip_math.h:729
__DEVICE__ long int lrintf(float __x)
Round x to nearest integer value.
Definition: __clang_hip_math.h:566
__DEVICE__ float acoshf(float __x)
Returns the nonnegative arc hyperbolic cosine of x.
Definition: __clang_hip_math.h:397
__DEVICE__ float cosf(float __x)
Returns the cosine of x.
Definition: __clang_hip_math.h:424
__DEVICE__ float expf(float __x)
Returns .
Definition: __clang_hip_math.h:460
__DEVICE__ float nextafterf(float __x, float __y)
Returns next representable single-precision floating-point value after x.
Definition: __clang_hip_math.h:608
__DEVICE__ long long int llrintf(float __x)
Round x to nearest integer value.
Definition: __clang_hip_math.h:545
__DEVICE__ float fdividef(float __x, float __y)
Divide two floating point values.
Definition: __clang_hip_math.h:472
__DEVICE__ float rcbrtf(float __x)
Returns the reciprocal cube root function.
Definition: __clang_hip_math.h:647
__DEVICE__ float cbrtf(float __x)
Returns the cube root of x.
Definition: __clang_hip_math.h:415
__DEVICE__ float scalblnf(float __x, long int __n)
Scale x by .
Definition: __clang_hip_math.h:702
__DEVICE__ float rintf(float __x)
Round x to nearest integer value in floating-point.
Definition: __clang_hip_math.h:671
__DEVICE__ float normcdff(float __x)
Returns the standard normal cumulative distribution function.
Definition: __clang_hip_math.h:623
__DEVICE__ float __fdiv_rn(float __x, float __y)
Divide two floating-point values in round-to-nearest-even mode.
Definition: __clang_hip_math.h:222
__DEVICE__ float __sinf(float __x)
Returns the fast approximate sine of x.
Definition: __clang_hip_math.h:360
__DEVICE__ float __cosf(float __x)
Returns the fast approximate cosine of x.
Definition: __clang_hip_math.h:173
__DEVICE__ float __fdividef(float __x, float __y)
Returns the fast approximate of x / y.
Definition: __clang_hip_math.h:226
__DEVICE__ float __frsqrt_rn(float __x)
Returns in round-to-nearest-even mode.
Definition: __clang_hip_math.h:297
__DEVICE__ float __log2f(float __x)
Returns the fast approximate for base 2 logarithm of x.
Definition: __clang_hip_math.h:342
__DEVICE__ float __exp10f(float __x)
Returns the fast approximate for .
Definition: __clang_hip_math.h:176
__DEVICE__ float __frcp_rn(float __x)
Returns 1 / x in round-to-nearest-even mod.
Definition: __clang_hip_math.h:292
__DEVICE__ float __fsub_rn(float __x, float __y)
Subtract two floating-point values in round-to-nearest-even mode.
Definition: __clang_hip_math.h:334
__DEVICE__ float __tanf(float __x)
Returns the fast approximate tangent of x.
Definition: __clang_hip_math.h:363
__DEVICE__ float __fsqrt_rn(float __x)
Returns in round-to-nearest-even mode.
Definition: __clang_hip_math.h:315
__DEVICE__ float __fmaf_rn(float __x, float __y, float __z)
Returns as a single operation, in round-to-nearest-even mode.
Definition: __clang_hip_math.h:252
__DEVICE__ float __fadd_rn(float __x, float __y)
Add two floating-point values in round-to-nearest-even mode.
Definition: __clang_hip_math.h:203
__DEVICE__ float __expf(float __x)
Returns the fast approximate for .
Definition: __clang_hip_math.h:182
__DEVICE__ float __logf(float __x)
Returns the fast approximate for natural logarithm of x.
Definition: __clang_hip_math.h:345
__DEVICE__ void __sincosf(float __x, float *__sinptr, float *__cosptr)
Returns the fast approximate of sine and cosine of x.
Definition: __clang_hip_math.h:354
__DEVICE__ float __log10f(float __x)
Returns the fast approximate for base 10 logarithm of x.
Definition: __clang_hip_math.h:339
__DEVICE__ float __fmul_rn(float __x, float __y)
Multiply two floating-point values in round-to-nearest-even mode.
Definition: __clang_hip_math.h:273
__DEVICE__ float __saturatef(float __x)
Clamp x to [+0.0, 1.0].
Definition: __clang_hip_math.h:351
__DEVICE__ float __powf(float __x, float __y)
Returns the fast approximate of .
Definition: __clang_hip_math.h:348
__DEVICE__ uint64_t __make_mantissa_base10(const char *__tagp __attribute__((nonnull)))
Make base 10 (decimal) mantissa char array.
Definition: __clang_hip_math.h:111
__DEVICE__ uint64_t __make_mantissa_base8(const char *__tagp __attribute__((nonnull)))
Make base 8 (octal) mantissa from char array.
Definition: __clang_hip_math.h:94
__DEVICE__ uint64_t __make_mantissa(const char *__tagp __attribute__((nonnull)))
Make mantissa based on number format char array.
Definition: __clang_hip_math.h:149
__DEVICE__ uint64_t __make_mantissa_base16(const char *__tagp __attribute__((nonnull)))
Make base 16 (hexadecimal) mantissa char array.
Definition: __clang_hip_math.h:128