Programming for HIP runtime compiler (RTC)#
HIP supports the kernels compilation at runtime with the hiprtc*
APIs.
Kernels can be stored as a text string and can be passed to HIPRTC APIs
alongside options to guide the compilation.
Note
This library can be used for compilation on systems without AMD GPU drivers installed (offline compilation). However, running the compiled code still requires both the HIP runtime library and GPU drivers on the target system.
This library depends on Code Object Manager (comgr). You can try to statically link comgr into HIPRTC to avoid ambiguity.
Developers can bundle this library with their application.
Compilation APIs#
To use HIPRTC functionality the header needs to be included:
#include <hip/hiprtc.h>
Kernels can be stored in a string:
static constexpr auto kernel_source {
R"(
extern "C"
__global__ void vector_add(float* output, float* input1, float* input2, size_t size) {
int i = threadIdx.x;
if (i < size) {
output[i] = input1[i] + input2[i];
}
}
)"};
To compile this kernel, it needs to be associated with
hiprtcProgram
type, which is done by declaring hiprtcProgram prog;
and associating the string of kernel with this program:
hiprtcCreateProgram(&prog, // HIPRTC program handle
kernel_source, // HIP kernel source string
"vector_add.cpp", // Name of the HIP program, can be null or an empty string
0, // Number of headers
NULL, // Header sources
NULL); // Name of header files
hiprtcCreateProgram()
API also allows you to add headers which can be
included in your RTC program. For online compilation, the compiler pre-defines
HIP device API functions, HIP specific types and macros for device compilation,
but doesn’t include standard C/C++ headers by default. Users can only include
header files provided to hiprtcCreateProgram()
.
After associating the kernel string with hiprtcProgram
, you can
now compile this program using:
hiprtcCompileProgram(prog, // hiprtcProgram
0, // Number of options
options); // Clang Options [Supported Clang Options](clang_options.md)
hiprtcCompileProgram()
returns a status value which can be converted
to string via hiprtcGetErrorString()
. If compilation is successful,
hiprtcCompileProgram()
will return HIPRTC_SUCCESS
.
if the compilation fails or produces warnings, you can look up the logs via:
size_t logSize;
hiprtcGetProgramLogSize(prog, &logSize);
if (logSize) {
string log(logSize, '\0');
hiprtcGetProgramLog(prog, &log[0]);
// Corrective action with logs
}
If the compilation is successful, you can load the compiled binary in a local variable.
size_t codeSize;
hiprtcGetCodeSize(prog, &codeSize);
vector<char> kernel_binary(codeSize);
hiprtcGetCode(prog, kernel_binary.data());
After loading the binary, hiprtcProgram
can be destroyed.
hiprtcDestroyProgram(&prog);
The binary present in kernel_binary
can now be loaded via
hipModuleLoadData()
API.
hipModule_t module;
hipFunction_t kernel;
hipModuleLoadData(&module, kernel_binary.data());
hipModuleGetFunction(&kernel, module, "vector_add");
And now this kernel can be launched via hipModule
APIs.
The full example is below:
#include <hip/hip_runtime.h>
#include <hip/hiprtc.h>
#include <iostream>
#include <string>
#include <vector>
#define CHECK_RET_CODE(call, ret_code) \
{ \
if ((call) != ret_code) { \
std::cout << "Failed in call: " << #call << std::endl; \
std::abort(); \
} \
}
#define HIP_CHECK(call) CHECK_RET_CODE(call, hipSuccess)
#define HIPRTC_CHECK(call) CHECK_RET_CODE(call, HIPRTC_SUCCESS)
// source code for hiprtc
static constexpr auto kernel_source{
R"(
extern "C"
__global__ void vector_add(float* output, float* input1, float* input2, size_t size) {
int i = threadIdx.x;
if (i < size) {
output[i] = input1[i] + input2[i];
}
}
)"};
int main() {
hiprtcProgram prog;
auto rtc_ret_code = hiprtcCreateProgram(&prog, // HIPRTC program handle
kernel_source, // kernel source string
"vector_add.cpp", // Name of the file
0, // Number of headers
NULL, // Header sources
NULL); // Name of header file
if (rtc_ret_code != HIPRTC_SUCCESS) {
std::cout << "Failed to create program" << std::endl;
std::abort();
}
hipDeviceProp_t props;
int device = 0;
HIP_CHECK(hipGetDeviceProperties(&props, device));
std::string sarg = std::string("--gpu-architecture=") +
props.gcnArchName; // device for which binary is to be generated
const char* options[] = {sarg.c_str()};
rtc_ret_code = hiprtcCompileProgram(prog, // hiprtcProgram
0, // Number of options
options); // Clang Options
if (rtc_ret_code != HIPRTC_SUCCESS) {
std::cout << "Failed to create program" << std::endl;
std::abort();
}
size_t logSize;
HIPRTC_CHECK(hiprtcGetProgramLogSize(prog, &logSize));
if (logSize) {
std::string log(logSize, '\0');
HIPRTC_CHECK(hiprtcGetProgramLog(prog, &log[0]));
std::cout << "Compilation failed or produced warnings: " << log << std::endl;
std::abort();
}
size_t codeSize;
HIPRTC_CHECK(hiprtcGetCodeSize(prog, &codeSize));
std::vector<char> kernel_binary(codeSize);
HIPRTC_CHECK(hiprtcGetCode(prog, kernel_binary.data()));
HIPRTC_CHECK(hiprtcDestroyProgram(&prog));
hipModule_t module;
hipFunction_t kernel;
HIP_CHECK(hipModuleLoadData(&module, kernel_binary.data()));
HIP_CHECK(hipModuleGetFunction(&kernel, module, "vector_add"));
constexpr size_t ele_size = 256; // total number of items to add
std::vector<float> hinput, output;
hinput.reserve(ele_size);
output.reserve(ele_size);
for (size_t i = 0; i < ele_size; i++) {
hinput.push_back(static_cast<float>(i + 1));
output.push_back(0.0f);
}
float *dinput1, *dinput2, *doutput;
HIP_CHECK(hipMalloc(&dinput1, sizeof(float) * ele_size));
HIP_CHECK(hipMalloc(&dinput2, sizeof(float) * ele_size));
HIP_CHECK(hipMalloc(&doutput, sizeof(float) * ele_size));
HIP_CHECK(hipMemcpy(dinput1, hinput.data(), sizeof(float) * ele_size, hipMemcpyHostToDevice));
HIP_CHECK(hipMemcpy(dinput2, hinput.data(), sizeof(float) * ele_size, hipMemcpyHostToDevice));
struct {
float* output;
float* input1;
float* input2;
size_t size;
} args{doutput, dinput1, dinput2, ele_size};
auto size = sizeof(args);
void* config[] = {HIP_LAUNCH_PARAM_BUFFER_POINTER, &args, HIP_LAUNCH_PARAM_BUFFER_SIZE, &size,
HIP_LAUNCH_PARAM_END};
HIP_CHECK(hipModuleLaunchKernel(kernel, 1, 1, 1, ele_size, 1, 1, 0, nullptr, nullptr, config));
HIP_CHECK(hipMemcpy(output.data(), doutput, sizeof(float) * ele_size, hipMemcpyDeviceToHost));
for (size_t i = 0; i < ele_size; i++) {
if ((hinput[i] + hinput[i]) != output[i]) {
std::cout << "Failed in validation: " << (hinput[i] + hinput[i]) << " - " << output[i]
<< std::endl;
std::abort();
}
}
std::cout << "Passed" << std::endl;
HIP_CHECK(hipFree(dinput1));
HIP_CHECK(hipFree(dinput2));
HIP_CHECK(hipFree(doutput));
}
Kernel Compilation Cache#
HIPRTC incorporates a cache to avoid recompiling kernels between program
executions. The contents of the cache include the kernel source code (including
the contents of any #include
headers), the compilation flags, and the
compiler version. After a ROCm version update, the kernels are progressively
recompiled, and the new results are cached. When the cache is disabled, each
kernel is recompiled every time it is requested.
Use the following environment variables to manage the cache status as enabled or disabled, the location for storing the cache contents, and the cache eviction policy:
AMD_COMGR_CACHE
By default this variable has a value of0
and the compilation cache feature is disabled. To enable the feature set the environment variable to a value of1
(or any value other than0
).AMD_COMGR_CACHE_DIR
: By default the value of this environment variable is defined as$XDG_CACHE_HOME/comgr_cache
, which defaults to$USER/.cache/comgr_cache
on Linux, and%LOCALAPPDATA%\cache\comgr_cache
on Windows. You can specify a different directory for the environment variable to change the path for cache storage. If the runtime fails to access the specified cache directory, or the environment variable is set to an empty string (“”), the cache is disabled.AMD_COMGR_CACHE_POLICY
: If assigned a value, the string is interpreted and applied to the cache pruning policy. The string format is consistent with Clang’s ThinLTO cache pruning policy. The default policy is defined as:prune_interval=1h:prune_expiration=0h:cache_size=75%:cache_size_bytes=30g:cache_size_files=0
. If the runtime fails to parse the defined string, or the environment variable is set to an empty string (“”), the cache is disabled.
Note
This cache is also shared with the OpenCL runtime shipped with ROCm.
HIPRTC specific options#
HIPRTC provides a few HIPRTC specific flags:
--gpu-architecture
: This flag can guide the code object generation for a specific GPU architecture. Example:--gpu-architecture=gfx906:sramecc+:xnack-
, its equivalent to--offload-arch
.This option is compulsory if compilation is done on a system without AMD GPUs supported by HIP runtime.
Otherwise, HIPRTC will load the hip runtime and gather the current device and its architecture info and use it as option.
-fgpu-rdc
: This flag when provided during thehiprtcCreateProgram()
generates the bitcode (HIPRTC doesn’t convert this bitcode into ISA and binary). This bitcode can later be fetched usinghiprtcGetBitcode()
andhiprtcGetBitcodeSize()
APIs.
Bitcode#
In the usual scenario, the kernel associated with hiprtcProgram
is
compiled into the binary which can be loaded and run. However, if -fgpu-rdc
option is provided in the compile options, HIPRTC calls comgr and generates only
the LLVM bitcode. It doesn’t convert this bitcode to ISA and generate the final
binary.
std::string sarg = std::string("-fgpu-rdc");
const char* options[] = {
sarg.c_str() };
hiprtcCompileProgram(prog, // hiprtcProgram
1, // Number of options
options);
If the compilation is successful, one can load the bitcode in a local variable using the bitcode APIs provided by HIPRTC.
size_t bitCodeSize;
hiprtcGetBitcodeSize(prog, &bitCodeSize);
vector<char> kernel_bitcode(bitCodeSize);
hiprtcGetBitcode(prog, kernel_bitcode.data());
CU Mode vs WGP mode#
AMD GPUs consist of an array of workgroup processors, each built with 2 compute units (CUs) capable of executing SIMD32. All the CUs inside a workgroup processor use local data share (LDS).
gfx10+ support execution of wavefront in CU mode and work-group processor mode (WGP). Please refer to section 2.3 of RDNA3 ISA reference.
gfx9 and below only supports CU mode.
In WGP mode, 4 warps of a block can simultaneously be executed on the workgroup processor, where as in CU mode only 2 warps of a block can simultaneously execute on a CU. In theory, WGP mode might help with occupancy and increase the performance of certain HIP programs (if not bound to inter warp communication), but might incur performance penalty on other HIP programs which rely on atomics and inter warp communication. This also has effect of how the LDS is split between warps, please refer to RDNA3 ISA reference for more information.
Note
HIPRTC assumes WGP mode by default for gfx10+. This can be overridden by
passing -mcumode
to HIPRTC compile options in
hiprtcCompileProgram()
.
Linker APIs#
The bitcode generated using the HIPRTC Bitcode APIs can be loaded using
hipModule
APIs and also can be linked with other generated bitcodes with
appropriate linker flags using the HIPRTC linker APIs. This also provides more
flexibility and optimizations to the applications who want to generate the
binary dynamically according to their needs. The input bitcodes can be generated
only for a specific architecture or it can be a bundled bitcode which is
generated for multiple architectures.
Example#
Firstly, HIPRTC link instance or a pending linker invocation must be created
using hiprtcLinkCreate()
, with the appropriate linker options
provided.
hiprtcLinkCreate( num_options, // number of options
options, // Array of options
option_vals, // Array of option values cast to void*
&rtc_link_state ); // HIPRTC link state created upon success
Following which, the bitcode data can be added to this link instance via
hiprtcLinkAddData()
(if the data is present as a string) or
hiprtcLinkAddFile()
(if the data is present as a file) with the
appropriate input type according to the data or the bitcode used.
hiprtcLinkAddData(rtc_link_state, // HIPRTC link state
input_type, // type of the input data or bitcode
bit_code_ptr, // input data which is null terminated
bit_code_size, // size of the input data
"a", // optional name for this input
0, // size of the options
0, // Array of options applied to this input
0); // Array of option values cast to void*
hiprtcLinkAddFile(rtc_link_state, // HIPRTC link state
input_type, // type of the input data or bitcode
bc_file_path.c_str(), // path to the input file where bitcode is present
0, // size of the options
0, // Array of options applied to this input
0); // Array of option values cast to void*
Once the bitcodes for multiple architectures are added to the link instance, the
linking of the device code must be completed using hiprtcLinkComplete()
which generates the final binary.
hiprtcLinkComplete(rtc_link_state, // HIPRTC link state
&binary, // upon success, points to the output binary
&binarySize); // size of the binary is stored (optional)
If the hiprtcLinkComplete()
returns successfully, the generated binary
can be loaded and run using the hipModule*
APIs.
hipModuleLoadData(&module, binary);
Note
The compiled binary must be loaded before HIPRTC link instance is destroyed using the
hiprtcLinkDestroy()
API.hiprtcLinkDestroy(rtc_link_state);
The correct sequence of calls is :
hiprtcLinkCreate()
,hiprtcLinkAddData()
orhiprtcLinkAddFile()
,hiprtcLinkComplete()
,hipModuleLoadData()
,hiprtcLinkDestroy()
.
Input Types#
HIPRTC provides hiprtcJITInputType
enumeration type which defines the input
types accepted by the Linker APIs. Here are the enum
values of
hiprtcJITInputType
. However only the input types
HIPRTC_JIT_INPUT_LLVM_BITCODE
, HIPRTC_JIT_INPUT_LLVM_BUNDLED_BITCODE
and
HIPRTC_JIT_INPUT_LLVM_ARCHIVES_OF_BUNDLED_BITCODE
are supported currently.
HIPRTC_JIT_INPUT_LLVM_BITCODE
can be used to load both LLVM bitcode or LLVM
IR assembly code. However, HIPRTC_JIT_INPUT_LLVM_BUNDLED_BITCODE
and
HIPRTC_JIT_INPUT_LLVM_ARCHIVES_OF_BUNDLED_BITCODE
are only for bundled
bitcode and archive of bundled bitcode.
HIPRTC_JIT_INPUT_CUBIN = 0,
HIPRTC_JIT_INPUT_PTX,
HIPRTC_JIT_INPUT_FATBINARY,
HIPRTC_JIT_INPUT_OBJECT,
HIPRTC_JIT_INPUT_LIBRARY,
HIPRTC_JIT_INPUT_NVVM,
HIPRTC_JIT_NUM_LEGACY_INPUT_TYPES,
HIPRTC_JIT_INPUT_LLVM_BITCODE = 100,
HIPRTC_JIT_INPUT_LLVM_BUNDLED_BITCODE = 101,
HIPRTC_JIT_INPUT_LLVM_ARCHIVES_OF_BUNDLED_BITCODE = 102,
HIPRTC_JIT_NUM_INPUT_TYPES = (HIPRTC_JIT_NUM_LEGACY_INPUT_TYPES + 3)
Backward Compatibility of LLVM Bitcode/IR#
For HIP applications utilizing HIPRTC to compile LLVM bitcode/IR, compatibility is assured only when the ROCm or HIP SDK version used for generating the LLVM bitcode/IR matches the version used during the runtime compilation. When an application requires the ingestion of bitcode/IR not derived from the currently installed AMD compiler, it must run with HIPRTC and comgr dynamic libraries that are compatible with the version of the bitcode/IR.
Comgr is a shared library that incorporates the LLVM/Clang compiler that HIPRTC relies on. To identify the bitcode/IR version that comgr is compatible with, one can execute “clang -v” using the clang binary from the same ROCm or HIP SDK package. For instance, if compiling bitcode/IR version 14, the HIPRTC and comgr libraries released by AMD around mid 2022 would be the best choice, assuming the LLVM/Clang version included in the package is also version 14.
To ensure smooth operation and compatibility, an application may choose to ship the specific versions of HIPRTC and comgr dynamic libraries, or it may opt to clearly specify the version requirements and dependencies. This approach guarantees that the application can correctly compile the specified version of bitcode/IR.
Link Options#
HIPRTC_JIT_IR_TO_ISA_OPT_EXT
- AMD Only. Options to be passed on to link step of compiler byhiprtcLinkCreate()
.HIPRTC_JIT_IR_TO_ISA_OPT_COUNT_EXT
- AMD Only. Count of options passed on to link step of compiler.
Example:
const char* isaopts[] = {"-mllvm", "-inline-threshold=1", "-mllvm", "-inlinehint-threshold=1"};
std::vector<hiprtcJIT_option> jit_options = {HIPRTC_JIT_IR_TO_ISA_OPT_EXT,
HIPRTC_JIT_IR_TO_ISA_OPT_COUNT_EXT};
size_t isaoptssize = 4;
const void* lopts[] = {(void*)isaopts, (void*)(isaoptssize)};
hiprtcLinkState linkstate;
hiprtcLinkCreate(2, jit_options.data(), (void**)lopts, &linkstate);
Error Handling#
HIPRTC defines the hiprtcResult
enumeration type and a function
hiprtcGetErrorString()
for API call error handling. hiprtcResult
enum
defines the API result codes. HIPRTC APIs return hiprtcResult
to
indicate the call result. hiprtcGetErrorString()
function returns a
string describing the given hiprtcResult
code, for example HIPRTC_SUCCESS to
“HIPRTC_SUCCESS”. For unrecognized enumeration values, it returns
“Invalid HIPRTC error code”.
hiprtcResult
enum
supported values and the
hiprtcGetErrorString()
usage are mentioned below.
HIPRTC_SUCCESS = 0,
HIPRTC_ERROR_OUT_OF_MEMORY = 1,
HIPRTC_ERROR_PROGRAM_CREATION_FAILURE = 2,
HIPRTC_ERROR_INVALID_INPUT = 3,
HIPRTC_ERROR_INVALID_PROGRAM = 4,
HIPRTC_ERROR_INVALID_OPTION = 5,
HIPRTC_ERROR_COMPILATION = 6,
HIPRTC_ERROR_LINKING = 7,
HIPRTC_ERROR_BUILTIN_OPERATION_FAILURE = 8,
HIPRTC_ERROR_NO_NAME_EXPRESSIONS_AFTER_COMPILATION = 9,
HIPRTC_ERROR_NO_LOWERED_NAMES_BEFORE_COMPILATION = 10,
HIPRTC_ERROR_NAME_EXPRESSION_NOT_VALID = 11,
HIPRTC_ERROR_INTERNAL_ERROR = 12
hiprtcResult result;
result = hiprtcCompileProgram(prog, 1, opts);
if (result != HIPRTC_SUCCESS) {
std::cout << "hiprtcCompileProgram fails with error " << hiprtcGetErrorString(result);
}
HIPRTC General APIs#
HIPRTC provides hiprtcVersion(int* major, int* minor)
for querying the
version. This sets the output parameters major and minor with the HIP Runtime
compilation major version and minor version number respectively.
Currently, it returns hardcoded values. This should be implemented to return HIP runtime major and minor version in the future releases.
Lowered Names (Mangled Names)#
HIPRTC mangles the __global__
function names and names of __device__
and
__constant__
variables. If the generated binary is being loaded using the
HIP Runtime API, the kernel function or __device__/__constant__
variable
must be looked up by name, but this is very hard when the name has been mangled.
To overcome this, HIPRTC provides API functions that map __global__
function
or __device__/__constant__
variable names in the source to the mangled names
present in the generated binary.
The two APIs hiprtcAddNameExpression()
and
hiprtcGetLoweredName()
provide this functionality. First, a ‘name
expression’ string denoting the address for the __global__
function or
__device__/__constant__
variable is provided to
hiprtcAddNameExpression()
. Then, the program is compiled with
hiprtcCreateProgram()
. During compilation, HIPRTC will parse the name
expression string as a C++ constant expression at the end of the user program.
Finally, the function hiprtcGetLoweredName()
is called with the
original name expression and it returns a pointer to the lowered name. The
lowered name can be used to refer to the kernel or variable in the HIP Runtime
API.
Note
The identical name expression string must be provided on a subsequent call to
hiprtcGetLoweredName()
to extract the lowered name.The correct sequence of calls is :
hiprtcAddNameExpression()
,hiprtcCreateProgram()
,hiprtcGetLoweredName()
,hiprtcDestroyProgram()
.The lowered names must be fetched using
hiprtcGetLoweredName()
only after the HIPRTC program has been compiled, and before it has been destroyed.
Example#
Kernel containing various definitions __global__
functions/function
templates and __device__/__constant__
variables can be stored in a string.
static constexpr const char gpu_program[] {
R"(
__device__ int V1; // set from host code
static __global__ void f1(int *result) { *result = V1 + 10; }
namespace N1 {
namespace N2 {
__constant__ int V2; // set from host code
__global__ void f2(int *result) { *result = V2 + 20; }
}
}
template<typename T>
__global__ void f3(int *result) { *result = sizeof(T); }
)"};
hiprtcAddNameExpression()
is called with various name expressions
referring to the address of __global__
functions and
__device__/__constant__
variables.
kernel_name_vec.push_back("&f1");
kernel_name_vec.push_back("N1::N2::f2");
kernel_name_vec.push_back("f3<int>");
for (auto&& x : kernel_name_vec) hiprtcAddNameExpression(prog, x.c_str());
variable_name_vec.push_back("&V1");
variable_name_vec.push_back("&N1::N2::V2");
for (auto&& x : variable_name_vec) hiprtcAddNameExpression(prog, x.c_str());
After which, the program is compiled using hiprtcCompileProgram()
, the
generated binary is loaded using hipModuleLoadData()
, and the mangled
names can be fetched using hirtcGetLoweredName()
.
for (decltype(variable_name_vec.size()) i = 0; i != variable_name_vec.size(); ++i) {
const char* name;
hiprtcGetLoweredName(prog, variable_name_vec[i].c_str(), &name);
}
for (decltype(kernel_name_vec.size()) i = 0; i != kernel_name_vec.size(); ++i) {
const char* name;
hiprtcGetLoweredName(prog, kernel_name_vec[i].c_str(), &name);
}
The mangled name of the variables are used to look up the variable in the module and update its value.
hipDeviceptr_t variable_addr;
size_t bytes{};
hipModuleGetGlobal(&variable_addr, &bytes, module, name);
hipMemcpyHtoD(variable_addr, &initial_value, sizeof(initial_value));
Finally, the mangled name of the kernel is used to launch it using the
hipModule
APIs.
hipFunction_t kernel;
hipModuleGetFunction(&kernel, module, name);
hipModuleLaunchKernel(kernel, 1, 1, 1, 1, 1, 1, 0, nullptr, nullptr, config);
Versioning#
HIPRTC uses the following versioning:
Linux
HIPRTC follows the same versioning as HIP runtime library.
The
so
name field for the shared library is set to MAJOR version. For example, for HIP 5.3 theso
name is set to 5 (hiprtc.so.5
).
Windows
HIPRTC dll is named as
hiprtcXXYY.dll
whereXX
is MAJOR version andYY
is MINOR version. For example, for HIP 5.3 the name ishiprtc0503.dll
.
HIP header support#
Added HIPRTC support for all the hip common header files such as
library_types.h
, hip_math_constants.h
, hip_complex.h
,
math_functions.h
, surface_types.h
etc. from 6.1. HIPRTC users need not
include any HIP macros or constants explicitly in their header files. All of
these should get included via HIPRTC builtins when the app links to HIPRTC
library.
Deprecation notice#
Currently HIPRTC APIs are separated from HIP APIs and HIPRTC is available as a separate library
libhiprtc.so
/libhiprtc.dll
. But on Linux, HIPRTC symbols are also present inlibamdhip64.so
in order to support the existing applications. Gradually, these symbols will be removed from HIP library and applications using HIPRTC will be required to explicitly link to HIPRTC library. However, on Windowshiprtc.dll
must be used as theamdhip64.dll
doesn’t contain the HIPRTC symbols.Data types such as
uint32_t
,uint64_t
,int32_t
,int64_t
defined in std namespace in HIPRTC are deprecated earlier and are being removed from ROCm release 6.1 since these can conflict with the standard C++ data types. These data types are now prefixed with__hip__
, for example__hip_uint32_t
. Applications previously usingstd::uint32_t
or similar types can use__hip_
prefixed types to avoid conflicts with standard std namespace or application can have their own definitions for these types. Also, type_traits templates previously defined in std namespace are moved to__hip_internal
namespace as implementation details.